In [ ]:
import pandas as pd
%matplotlib inline
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
import numpy as np

In [ ]:
df = pd.read_csv("data/hanford.csv")

In [ ]:
df

In [ ]:
lm = LinearRegression()

In [ ]:
data = np.asarray(df[['Mortality','Exposure']])
x = data[:,1:]
y = data[:,0]

In [ ]:
data

In [ ]:
x

In [ ]:
lm.fit(x,y)

In [ ]:
lm.coef_

In [ ]:
lm.score(x,y)

In [ ]:
slope = lm.coef_[0]

In [ ]:
intercept = lm.intercept_

In [ ]:
df.plot(kind='scatter',x='Exposure',y='Mortality')
plt.plot(df['Exposure'],slope*df['Exposure']+intercept,'-')

In [ ]:
lm.predict(10)

In [ ]: