In [ ]:
import pandas as pd
%matplotlib inline
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
import numpy as np
In [ ]:
df = pd.read_csv("data/hanford.csv")
In [ ]:
df
In [ ]:
lm = LinearRegression()
In [ ]:
data = np.asarray(df[['Mortality','Exposure']])
x = data[:,1:]
y = data[:,0]
In [ ]:
data
In [ ]:
x
In [ ]:
lm.fit(x,y)
In [ ]:
lm.coef_
In [ ]:
lm.score(x,y)
In [ ]:
slope = lm.coef_[0]
In [ ]:
intercept = lm.intercept_
In [ ]:
df.plot(kind='scatter',x='Exposure',y='Mortality')
plt.plot(df['Exposure'],slope*df['Exposure']+intercept,'-')
In [ ]:
lm.predict(10)
In [ ]: