In [1]:
import pandas as pd
%matplotlib inline
from sklearn import datasets
from pandas.tools.plotting import scatter_matrix
In [3]:
iris = datasets.load_iris()
In [4]:
x = iris.data[:,2:] # the attributes
y = iris.target # the target variable
In [5]:
from sklearn import tree
In [6]:
dt = tree.DecisionTreeClassifier()
In [7]:
dt = dt.fit(x,y)
In [10]:
from sklearn.cross_validation import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x,y,test_size=0.5,train_size=0.5)
dt = dt.fit(x_train,y_train)
In [11]:
from sklearn import metrics
import numpy as np
def measure_performance(X,y,clf, show_accuracy=True, show_classification_report=True, show_confussion_matrix=True):
y_pred=clf.predict(X)
if show_accuracy:
print("Accuracy:{0:.3f}".format(metrics.accuracy_score(y, y_pred)),"\n")
if show_classification_report:
print("Classification report")
print(metrics.classification_report(y,y_pred),"\n")
if show_confussion_matrix:
print("Confusion matrix")
print(metrics.confusion_matrix(y,y_pred),"\n")
In [12]:
measure_performance(x_test,y_test,dt)
#Seems pretty good? Only two are wrong?
In [13]:
x_train, x_test, y_train, y_test = train_test_split(x,y,test_size=0.25,train_size=0.75)
dt = dt.fit(x_train,y_train)
def measure_performance(X,y,clf, show_accuracy=True, show_classification_report=True, show_confussion_matrix=True):
y_pred=clf.predict(X)
if show_accuracy:
print("Accuracy:{0:.3f}".format(metrics.accuracy_score(y, y_pred)),"\n")
if show_classification_report:
print("Classification report")
print(metrics.classification_report(y,y_pred),"\n")
if show_confussion_matrix:
print("Confusion matrix")
print(metrics.confusion_matrix(y,y_pred),"\n")
In [14]:
measure_performance(x_test,y_test,dt)
#This seems better, only one is wrong
datasets.load_breast_cancer()) and perform basic exploratory analysis. What attributes to we have? What are we trying to predict?For context of the data, see the documentation here: https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29
In [16]:
cancer = datasets.load_breast_cancer()
In [17]:
x = cancer.data[:,2:]
y = cancer.target
In [19]:
dt = tree.DecisionTreeClassifier()
dt = dt.fit(x,y)
In [20]:
x_train, x_test, y_train, y_test = train_test_split(x,y,test_size=0.5,train_size=0.5)
dt = dt.fit(x_train,y_train)
In [21]:
import numpy as np
def measure_performance(X,y,clf, show_accuracy=True, show_classification_report=True, show_confussion_matrix=True):
y_pred=clf.predict(X)
if show_accuracy:
print("Accuracy:{0:.3f}".format(metrics.accuracy_score(y, y_pred)),"\n")
if show_classification_report:
print("Classification report")
print(metrics.classification_report(y,y_pred),"\n")
if show_confussion_matrix:
print("Confusion matrix")
print(metrics.confusion_matrix(y,y_pred),"\n")
In [22]:
measure_performance(x_test,y_test,dt)
#Not...great
In [23]:
x_train, x_test, y_train, y_test = train_test_split(x,y,test_size=0.25,train_size=0.75)
dt = dt.fit(x_train,y_train)
In [24]:
import numpy as np
def measure_performance(X,y,clf, show_accuracy=True, show_classification_report=True, show_confussion_matrix=True):
y_pred=clf.predict(X)
if show_accuracy:
print("Accuracy:{0:.3f}".format(metrics.accuracy_score(y, y_pred)),"\n")
if show_classification_report:
print("Classification report")
print(metrics.classification_report(y,y_pred),"\n")
if show_confussion_matrix:
print("Confusion matrix")
print(metrics.confusion_matrix(y,y_pred),"\n")
In [25]:
measure_performance(x_test,y_test,dt)
#This seems better
In [ ]: