In [1]:
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
import statsmodels.formula.api as smf

In [3]:
pwd


Out[3]:
'C:\\Users\\Harsha Devulapalli\\Desktop\\algorithms\\class5\\homework'

In [4]:
cd C:\Users\Harsha Devulapalli\Desktop\algorithms


C:\Users\Harsha Devulapalli\Desktop\algorithms

In [5]:
cd ..


C:\Users\Harsha Devulapalli\Desktop

In [6]:
df=pd.read_csv("Fox1.csv")

In [7]:
df.plot(kind='scatter',x='Approve_of_Obama',y='Favour_Iran_Deal')
lm = smf.ols(formula="Favour_Iran_Deal~Approve_of_Obama",data=df).fit()
lm.params


Out[7]:
Intercept           30.528042
Approve_of_Obama     0.355619
dtype: float64

In [8]:
intercept, slope = lm.params

In [9]:
df.plot(kind="scatter",x="Approve_of_Obama",y="Favour_Iran_Deal")
plt.plot(df["Approve_of_Obama"],slope*df["Approve_of_Obama"]+intercept,"-",color="red")


Out[9]:
[<matplotlib.lines.Line2D at 0x1c72f7cbf98>]

In [10]:
df.plot(kind='scatter',x='Approve_of_Obama',y='Confident')
lm = smf.ols(formula="Confident~Approve_of_Obama",data=df).fit()
lm.params


Out[10]:
Intercept          -0.315065
Approve_of_Obama    0.389589
dtype: float64

In [11]:
intercept, slope = lm.params

In [12]:
df.plot(kind="scatter",x="Approve_of_Obama",y="Confident")
plt.plot(df["Approve_of_Obama"],slope*df["Approve_of_Obama"]+intercept,"-",color="red")


Out[12]:
[<matplotlib.lines.Line2D at 0x1c72fd18c18>]

In [ ]: