In [28]:
%matplotlib inline
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import csv
#import scipy.io.wavfile
import scipy.ndimage as sp
#import calendar
#from PIL import Image
import PIL
In [124]:
def opengreypil(filelocation):
return Image.open(filelocation).convert('LA')
def rgbtogrey(img, convert=np.average):
greyImg = np.array([[0] * img.shape[1]] * img.shape[0])
for ix, x in enumerate(img):
for iy, y in enumerate(x):
greyImg[ix][iy] = convert(y)
return 255 - greyImg
def printpicture(obj):
fig = plt.figure(figsize=(4,4))
plt.grid(False)
plt.imshow(obj, vmin=0, vmax=255)
cat = rgbtogrey(sp.imread('./smol_cat.png'))
printpicture(cat)
In [69]:
col_cat = cat.reshape((-1,1))
print col_cat
In [94]:
def col_vec_hist(v):
d = {}
for i in v:
d[i[0]] = d.get(i[0], 0)+1
histlist = []
for i in d:
histlist.append((i, d.get(i)))
sorted(histlist)
intensities = [i for (i,j) in histlist]
frequencies = [j for (i,j) in histlist]
return [intensities,frequencies]
In [107]:
def print_cat_hist(v):
[intensities, frequencies] = col_vec_hist(v)
plt.bar(intensities, frequencies)
plt.title("Cat Intensity Histogram")
plt.xlabel("Intensity")
#plt.xticks(np.arange(78-62+2)+62)
plt.ylabel("Frequency")
fig = plt.gcf()
print_cat_hist(col_cat)
In [93]:
mean = np.mean([i[0] for i in col_cat])
print mean
In [126]:
cat_darker = cat*2
col_cat_darker = cat_darker.reshape(-1,1)
#cat_darker = col_cat_darker.reshape((len(cat[0]),-1))
printpicture(cat)
printpicture(cat_darker)
In [132]:
plt.hist(cat)
plt.show()
plt.hist(cat_darker)
plt.show()
In [141]:
def linear_contrast_adjust(img):
col_img = img.reshape(-1,1)
maxpix = max([i[0] for i in col_img])
minpix = min([i[0] for i in col_img])
pixrange = maxpix - minpix
adjusted_img = img*(255/pixrange)-minpix
return adjusted_img
better_cat = linear_contrast_adjust(cat)
printpicture(cat)
plt.show()
plt.hist(cat)
plt.show()
printpicture(better_cat)
plt.show()
plt.hist(better_cat);
plt.show()
In [143]:
ferret_plague_vaccine = [[0,0,3],[1,0,1],[0,1,0],[1,1,6]]
finland_13_accidents = [[1,1,82,79.9],[1,2,2423,2483.7],[2,1,41,86.5],[2,2,789,2687.1]]
breast_implant_ruptures = [[0,0,63],[0,1,5],[1,0,28],[1,1,69]]
ferret_col = np.reshape(ferret_plague_vaccine,(-1,1))
implant_col = np.reshape(breast_implant_ruptures,(-1,1))
b = [[ferret_col[i],implant_col[i]] for i in range(len(ferret_col))]
ferret_mean = np.mean([i[0] for i in ferret_col])
ferret_stdDev = np.std([i[0] for i in ferret_col])
implant_mean = np.mean([i[0] for i in implant_col])
implant_stdDev = np.std([i[0] for i in implant_col])
a = []s
In [ ]: