In [32]:
import pandas as pd
import numpy as np
import csv
import matplotlib as plt


c_names = ['vID', 'frID', 'tFr','Timestamp', 'localX', 'localY', 'globalX','globalY', 'vLenght', 'vWidth', 'vType', 'veloc','accel', 'line', 'pred', 'foll', 'spac', 'headway', 'dateTime']

data = pd.read_table('D:\\zzzLola\\PhD\\DataSet\\US101\\test\\portion1Set2DT.txt', sep='\t', header=None, names=c_names)

# Stast description of the whole dataset.
desc = data.describe()

In [33]:
desc


Out[33]:
vID frID tFr Timestamp localX localY globalX globalY vLenght vWidth vType veloc accel line pred foll spac headway
count 1597.000000 1597.000000 1597.000000 1.597000e+03 1597.000000 1597.000000 1597.000000 1597.000000 1597.000000 1597.000000 1597 1597.000000 1597.000000 1597.000000 1597.000000 1597.000000 1597.000000 1597.000000
mean 4.182843 267.204133 404.460238 1.118847e+12 40.166214 1114.140043 6451915.031800 1872594.324443 15.425485 5.749092 2 46.853181 0.427790 3.865373 0.706324 9.244208 11.302549 0.241935
std 1.496573 123.996664 45.413270 1.239967e+04 18.506289 559.918912 419.122022 372.802068 1.209852 1.351837 0 7.709628 4.989681 1.647519 1.525733 3.987194 24.613803 0.523286
min 2.000000 8.000000 351.000000 1.118847e+12 6.263000 35.381000 6451122.815000 1871894.687000 14.000000 4.900000 2 32.640000 -11.200000 1.000000 0.000000 0.000000 0.000000 0.000000
25% 2.000000 172.000000 357.000000 1.118847e+12 17.813000 664.639000 6451572.038000 1872291.603000 14.500000 4.900000 2 40.710000 -1.460000 2.000000 0.000000 6.000000 0.000000 0.000000
50% 5.000000 272.000000 437.000000 1.118847e+12 42.818000 1102.629000 6451903.487000 1872598.226000 16.000000 4.900000 2 45.000000 0.000000 4.000000 0.000000 8.000000 0.000000 0.000000
75% 5.000000 371.000000 452.000000 1.118847e+12 54.753000 1572.348000 6452258.323000 1872883.465000 17.000000 7.900000 2 51.360000 2.660000 5.000000 0.000000 13.000000 0.000000 0.000000
max 6.000000 497.000000 452.000000 1.118847e+12 71.498000 2161.090000 6452704.608000 1873344.962000 17.000000 7.900000 2 70.030000 11.200000 7.000000 4.000000 18.000000 78.580000 1.500000

In [34]:
data[:50]


Out[34]:
vID frID tFr Timestamp localX localY globalX globalY vLenght vWidth vType veloc accel line pred foll spac headway dateTime
0 2 13 437 1118846980200 16.467 35.381 6451137.641 1873344.962 14.5 4.9 2 40.00 0.00 2 0 0 0 0 2005-06-15 14:49:40
1 2 14 437 1118846980300 16.447 39.381 6451140.329 1873342.000 14.5 4.9 2 40.00 0.00 2 0 0 0 0 2005-06-15 14:49:40
2 2 15 437 1118846980400 16.426 43.381 6451143.018 1873339.038 14.5 4.9 2 40.00 0.00 2 0 0 0 0 2005-06-15 14:49:40
3 2 16 437 1118846980500 16.405 47.380 6451145.706 1873336.077 14.5 4.9 2 40.00 0.00 2 0 0 0 0 2005-06-15 14:49:40
4 2 17 437 1118846980600 16.385 51.381 6451148.395 1873333.115 14.5 4.9 2 40.00 0.00 2 0 0 0 0 2005-06-15 14:49:40
5 2 18 437 1118846980700 16.364 55.381 6451151.084 1873330.153 14.5 4.9 2 40.00 0.00 2 0 0 0 0 2005-06-15 14:49:40
6 2 19 437 1118846980800 16.344 59.381 6451153.772 1873327.192 14.5 4.9 2 40.00 0.00 2 0 0 0 0 2005-06-15 14:49:40
7 2 20 437 1118846980900 16.323 63.379 6451156.461 1873324.230 14.5 4.9 2 40.02 0.25 2 0 0 0 0 2005-06-15 14:49:40
8 2 21 437 1118846981000 16.303 67.383 6451159.149 1873321.268 14.5 4.9 2 40.03 0.13 2 0 0 0 0 2005-06-15 14:49:41
9 2 22 437 1118846981100 16.282 71.398 6451161.838 1873318.307 14.5 4.9 2 39.93 -1.63 2 0 13 0 0 2005-06-15 14:49:41
10 2 23 437 1118846981200 16.262 75.401 6451164.546 1873315.323 14.5 4.9 2 39.61 -4.54 2 0 13 0 0 2005-06-15 14:49:41
11 2 24 437 1118846981300 16.254 79.349 6451167.199 1873312.382 14.5 4.9 2 39.14 -5.73 2 0 13 0 0 2005-06-15 14:49:41
12 2 25 437 1118846981400 16.221 83.233 6451169.802 1873309.533 14.5 4.9 2 38.61 -5.15 2 0 13 0 0 2005-06-15 14:49:41
13 2 26 437 1118846981500 16.201 87.043 6451172.358 1873306.719 14.5 4.9 2 38.28 -1.61 2 0 13 0 0 2005-06-15 14:49:41
14 2 27 437 1118846981600 16.169 90.829 6451174.961 1873303.870 14.5 4.9 2 38.42 3.73 2 0 13 0 0 2005-06-15 14:49:41
15 2 28 437 1118846981700 16.204 94.683 6451177.613 1873300.929 14.5 4.9 2 38.78 4.86 2 0 13 0 0 2005-06-15 14:49:41
16 2 29 437 1118846981800 16.252 98.611 6451180.342 1873297.924 14.5 4.9 2 38.92 0.00 2 0 13 0 0 2005-06-15 14:49:41
17 2 30 437 1118846981900 16.339 102.560 6451182.980 1873294.961 14.5 4.9 2 38.54 -8.59 2 0 13 0 0 2005-06-15 14:49:41
18 2 31 437 1118846982000 16.400 106.385 6451185.537 1873292.122 14.5 4.9 2 37.51 -11.20 2 0 13 0 0 2005-06-15 14:49:42
19 2 32 437 1118846982100 16.430 110.079 6451188.021 1873289.408 14.5 4.9 2 36.34 -10.86 2 0 13 0 0 2005-06-15 14:49:42
20 2 33 437 1118846982200 16.435 113.628 6451190.424 1873286.817 14.5 4.9 2 35.50 -6.20 2 0 13 0 0 2005-06-15 14:49:42
21 2 34 437 1118846982300 16.478 117.118 6451192.757 1873284.247 14.5 4.9 2 35.08 -1.89 2 0 13 0 0 2005-06-15 14:49:42
22 2 35 437 1118846982400 16.520 120.600 6451195.109 1873281.656 14.5 4.9 2 34.96 0.18 2 0 13 0 0 2005-06-15 14:49:42
23 2 36 437 1118846982500 16.562 124.096 6451197.462 1873279.065 14.5 4.9 2 34.98 0.25 2 0 13 0 0 2005-06-15 14:49:42
24 2 37 437 1118846982600 16.605 127.597 6451199.814 1873276.473 14.5 4.9 2 35.00 0.04 2 0 13 0 0 2005-06-15 14:49:42
25 2 38 437 1118846982700 16.647 131.099 6451202.167 1873273.882 14.5 4.9 2 34.99 -0.20 2 0 13 0 0 2005-06-15 14:49:42
26 2 39 437 1118846982800 16.691 134.595 6451204.519 1873271.290 14.5 4.9 2 34.98 -0.02 2 0 13 0 0 2005-06-15 14:49:42
27 2 40 437 1118846982900 16.727 138.081 6451206.879 1873268.700 14.5 4.9 2 35.10 1.95 2 0 13 0 0 2005-06-15 14:49:42
28 2 41 437 1118846983000 16.796 141.578 6451209.191 1873266.113 14.5 4.9 2 35.49 5.55 2 0 13 0 0 2005-06-15 14:49:43
29 2 42 437 1118846983100 16.795 145.131 6451211.610 1873263.514 14.5 4.9 2 36.20 8.99 2 0 13 0 0 2005-06-15 14:49:43
30 2 43 437 1118846983200 16.724 148.784 6451214.156 1873260.882 14.5 4.9 2 37.15 10.44 2 0 13 0 0 2005-06-15 14:49:43
31 2 44 437 1118846983300 16.588 152.559 6451216.824 1873258.213 14.5 4.9 2 38.12 9.30 2 0 13 0 0 2005-06-15 14:49:43
32 2 45 437 1118846983400 16.376 156.449 6451219.616 1873255.522 14.5 4.9 2 38.76 4.36 2 0 13 0 0 2005-06-15 14:49:43
33 2 46 437 1118846983500 16.064 160.379 6451222.548 1873252.829 14.5 4.9 2 38.95 -0.73 2 0 13 0 0 2005-06-15 14:49:43
34 2 47 437 1118846983600 15.763 164.277 6451225.462 1873250.139 14.5 4.9 2 38.95 -1.15 2 0 13 0 0 2005-06-15 14:49:43
35 2 48 437 1118846983700 15.471 168.150 6451228.376 1873247.450 14.5 4.9 2 38.99 1.90 2 0 13 0 0 2005-06-15 14:49:43
36 2 49 437 1118846983800 15.226 172.044 6451231.290 1873244.760 14.5 4.9 2 39.18 3.47 2 0 13 0 0 2005-06-15 14:49:43
37 2 50 437 1118846983900 14.979 176.000 6451234.204 1873242.071 14.5 4.9 2 39.34 0.02 2 0 13 0 0 2005-06-15 14:49:43
38 2 51 437 1118846984000 14.720 179.959 6451237.144 1873239.374 14.5 4.9 2 39.20 -3.52 2 0 13 0 0 2005-06-15 14:49:44
39 2 52 437 1118846984100 14.508 183.862 6451239.988 1873236.708 14.5 4.9 2 38.89 -3.28 2 0 13 0 0 2005-06-15 14:49:44
40 2 53 437 1118846984200 14.331 187.716 6451242.770 1873234.057 14.5 4.9 2 38.73 -0.33 2 0 13 0 0 2005-06-15 14:49:44
41 2 54 437 1118846984300 14.240 191.561 6451245.501 1873231.336 14.5 4.9 2 38.88 3.49 2 0 13 0 0 2005-06-15 14:49:44
42 2 55 437 1118846984400 14.309 195.455 6451248.125 1873228.494 14.5 4.9 2 39.28 5.00 2 0 13 0 0 2005-06-15 14:49:44
43 2 56 437 1118846984500 14.428 199.414 6451250.788 1873225.539 14.5 4.9 2 39.68 3.76 2 0 13 0 0 2005-06-15 14:49:44
44 2 57 437 1118846984600 14.540 203.417 6451253.489 1873222.554 14.5 4.9 2 39.94 1.29 2 0 13 0 0 2005-06-15 14:49:44
45 2 58 437 1118846984700 14.646 207.430 6451256.177 1873219.592 14.5 4.9 2 40.02 -0.22 2 0 13 0 0 2005-06-15 14:49:44
46 2 59 437 1118846984800 14.751 211.431 6451258.866 1873216.630 14.5 4.9 2 40.00 -0.21 2 0 13 0 0 2005-06-15 14:49:44
47 2 60 437 1118846984900 14.856 215.428 6451261.554 1873213.669 14.5 4.9 2 39.99 0.00 2 0 13 0 0 2005-06-15 14:49:44
48 2 61 437 1118846985000 14.962 219.427 6451264.243 1873210.707 14.5 4.9 2 39.99 0.00 2 0 13 0 0 2005-06-15 14:49:45
49 2 62 437 1118846985100 15.067 223.462 6451266.932 1873207.745 14.5 4.9 2 39.65 -5.35 2 0 13 0 0 2005-06-15 14:49:45

In [35]:
ts1 = data[19:25]

In [36]:
ts2 = data[19:26]

In [37]:
ts1


Out[37]:
vID frID tFr Timestamp localX localY globalX globalY vLenght vWidth vType veloc accel line pred foll spac headway dateTime
19 2 32 437 1118846982100 16.430 110.079 6451188.021 1873289.408 14.5 4.9 2 36.34 -10.86 2 0 13 0 0 2005-06-15 14:49:42
20 2 33 437 1118846982200 16.435 113.628 6451190.424 1873286.817 14.5 4.9 2 35.50 -6.20 2 0 13 0 0 2005-06-15 14:49:42
21 2 34 437 1118846982300 16.478 117.118 6451192.757 1873284.247 14.5 4.9 2 35.08 -1.89 2 0 13 0 0 2005-06-15 14:49:42
22 2 35 437 1118846982400 16.520 120.600 6451195.109 1873281.656 14.5 4.9 2 34.96 0.18 2 0 13 0 0 2005-06-15 14:49:42
23 2 36 437 1118846982500 16.562 124.096 6451197.462 1873279.065 14.5 4.9 2 34.98 0.25 2 0 13 0 0 2005-06-15 14:49:42
24 2 37 437 1118846982600 16.605 127.597 6451199.814 1873276.473 14.5 4.9 2 35.00 0.04 2 0 13 0 0 2005-06-15 14:49:42

In [7]:
data(12:19)


  File "<ipython-input-7-e30932e2ca69>", line 1
    data(12:19)
           ^
SyntaxError: invalid syntax

In [8]:
data[(12:19)]


  File "<ipython-input-8-a09065cf9c5e>", line 1
    data[(12:19)]
            ^
SyntaxError: invalid syntax

In [9]:
data.iloc[[16]]


Out[9]:
vID frID tFr Timestamp localX localY globalX globalY vLenght vWidth vType veloc accel line pred foll spac headway dateTime
16 2 29 437 1118846981800 16.252 98.611 6451180.342 1873297.924 14.5 4.9 2 38.92 0 2 0 13 0 0 2005-06-15 14:49:41

In [12]:
data.at[[16, 19]]


---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-12-8544e4cc8bb5> in <module>()
----> 1 data.at[[16, 19]]

C:\Anaconda2\lib\site-packages\pandas\core\indexing.pyc in __getitem__(self, key)
   1550                 key = tuple([key])
   1551             else:
-> 1552                 raise ValueError('Invalid call for scalar access (getting)!')
   1553 
   1554         key = self._convert_key(key)

ValueError: Invalid call for scalar access (getting)!

In [40]:
dt1 = data.iat[16, 18]

In [41]:
dt2 = data.iat[25, 18]

In [42]:
dt1


Out[42]:
'2005-06-15 14:49:41'

In [43]:
dt2


Out[43]:
'2005-06-15 14:49:42'

In [15]:
from datetime import datetime

date_object1 = datetime.strptime(dt1, "%Y-%m-%d %H:%M:%S")

In [16]:
date_object2 = datetime.strptime(dt2, "%Y-%m-%d %H:%M:%S")

In [30]:
date_object1


Out[30]:
datetime.datetime(2005, 6, 15, 14, 49, 41)

In [17]:
date_object2


Out[17]:
datetime.datetime(2005, 6, 15, 14, 49, 42)

In [18]:
delta = date_object2 - date_object1
delta.total_seconds()


Out[18]:
1.0

In [21]:
v = 0
t = 0
for line in data:
    vID = line[0]
    if v == vID:
        dt = datetime.strptime(line[v,18], "%Y-%m-%d %H:%M:%S")
        if dt > t:
            d_max = dt
            t = dt
    print d_max


---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
<ipython-input-21-b9b134213971> in <module>()
      8             d_max = dt
      9             t = dt
---> 10     print d_max
     11 
     12 

NameError: name 'd_max' is not defined

In [30]:
v = 0
t = 0
time_list = []
for line in data:
    vID = data.iat[int(line),0]
    if data.iat[int(line+1),0]:
        print data.iat[int(line+1),0]
    print vID
    if v == vID:
        time = data[3]
        while (number != -1):
            num_list.append(time)
            number = int(time)
        t_max = max(time)
        t_min = min(time)
        print (v, t_max, t_min)


---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-30-b986b1a517c0> in <module>()
      3 time_list = []
      4 for line in data:
----> 5     vID = data.iat[line,0]
      6     print vID
      7     if v == vID:

C:\Anaconda2\lib\site-packages\pandas\core\indexing.pyc in __getitem__(self, key)
   1552                 raise ValueError('Invalid call for scalar access (getting)!')
   1553 
-> 1554         key = self._convert_key(key)
   1555         return self.obj.get_value(*key, takeable=self._takeable)
   1556 

C:\Anaconda2\lib\site-packages\pandas\core\indexing.pyc in _convert_key(self, key, is_setter)
   1613         for a, i in zip(self.obj.axes, key):
   1614             if not is_integer(i):
-> 1615                 raise ValueError("iAt based indexing can only have integer "
   1616                                  "indexers")
   1617         return key

ValueError: iAt based indexing can only have integer indexers

In [61]:
for i, row in data.iterrows():
    vID = data.irow(i)['vID']
    if data.irow(i+1)['vID']:
        vID1 = data.irow(i+1)['vID']
        print vID, vID1


2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
C:\Anaconda2\lib\site-packages\ipykernel\__main__.py:2: FutureWarning: irow(i) is deprecated. Please use .iloc[i]
  from ipykernel import kernelapp as app
C:\Anaconda2\lib\site-packages\ipykernel\__main__.py:3: FutureWarning: irow(i) is deprecated. Please use .iloc[i]
  app.launch_new_instance()
C:\Anaconda2\lib\site-packages\ipykernel\__main__.py:4: FutureWarning: irow(i) is deprecated. Please use .iloc[i]
---------------------------------------------------------------------------
IndexError                                Traceback (most recent call last)
<ipython-input-61-8232852309f9> in <module>()
      1 for i, row in data.iterrows():
      2     vID = data.irow(i)['vID']
----> 3     if data.irow(i+1)['vID']:
      4         vID1 = data.irow(i+1)['vID']
      5         print vID, vID1

C:\Anaconda2\lib\site-packages\pandas\core\frame.pyc in irow(self, i, copy)
   1854         warnings.warn("irow(i) is deprecated. Please use .iloc[i]",
   1855                       FutureWarning, stacklevel=2)
-> 1856         return self._ixs(i, axis=0)
   1857 
   1858     def icol(self, i):

C:\Anaconda2\lib\site-packages\pandas\core\frame.pyc in _ixs(self, i, axis)
   1882                 return self[i]
   1883             else:
-> 1884                 label = self.index[i]
   1885                 if isinstance(label, Index):
   1886                     # a location index by definition

C:\Anaconda2\lib\site-packages\pandas\core\index.pyc in __getitem__(self, key)
   1147 
   1148         if np.isscalar(key):
-> 1149             return getitem(key)
   1150 
   1151         if isinstance(key, slice):

IndexError: index 1597 is out of bounds for axis 0 with size 1597

In [ ]:
for