In [ ]:


In [ ]:


In [ ]:
%reset

In [1]:
%matplotlib inline

In [23]:
from pandas import Series, DataFrame
import pandas as pd
import numpy as np
import csv
import math
import matplotlib.pyplot as plt
from scipy.signal import hilbert, chirp
import scipy
import networkx as nx
from pandas.tools.plotting import parallel_coordinates

In [3]:
data = pd.read_table('D:\\zzzLola\\PhD\\DataSet\\US101\\test\\small.txt', sep='\t', header=None)

In [4]:
data[:10]


Out[4]:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 1073 3211 587 1118847300000 20.097 1999.367 6452595.286 1872026.290 12.5 5 2 59.92 -1.71 2 0 1083 0 0
1 1073 3212 587 1118847300100 20.025 2005.368 6452600.004 1872022.536 12.5 5 2 59.60 -4.46 2 0 1083 0 0
2 1073 3213 587 1118847300200 19.973 2011.314 6452604.649 1872018.817 12.5 5 2 59.14 -5.47 2 0 1083 0 0
3 1073 3214 587 1118847300300 19.886 2017.183 6452609.253 1872015.175 12.5 5 2 58.78 -2.54 2 0 1083 0 0
4 1073 3215 587 1118847300400 19.817 2023.016 6452613.792 1872011.563 12.5 5 2 58.78 2.52 2 0 1083 0 0
5 1073 3216 587 1118847300500 19.731 2028.885 6452618.396 1872007.921 12.5 5 2 59.14 5.47 2 0 1083 0 0
6 1073 3217 587 1118847300600 19.678 2034.831 6452623.041 1872004.202 12.5 5 2 59.60 4.46 2 0 1083 0 0
7 1073 3218 587 1118847300700 19.606 2040.831 6452627.759 1872000.448 12.5 5 2 59.91 1.71 2 0 1083 0 0
8 1073 3219 587 1118847300800 19.535 2046.858 6452632.453 1871996.712 12.5 5 2 59.90 -2.03 2 0 1083 0 0
9 1073 3220 587 1118847300900 19.464 2052.849 6452637.148 1871992.976 12.5 5 2 59.60 -3.95 2 0 1083 0 0

In [5]:
data.groupby([3])


Out[5]:
<pandas.core.groupby.DataFrameGroupBy object at 0x0000000006D032E8>

In [31]:
for i, group in data.groupby([3]):
    print group


      0     1    2              3       4         5            6   \
0   1073  3211  587  1118847300000  20.097  1999.367  6452595.286   
22  1077  3211  637  1118847300000   7.393  2086.090  6452670.807   

             7     8    9   10     11    12  13  14    15  16  17  
0   1872026.290  12.5  5.0   2  59.92 -1.71   2   0  1083   0   0  
22  1871981.512  13.0  5.9   2  64.98 -0.04   1   0  1082   0   0  
      0     1    2              3       4         5            6   \
1   1073  3212  587  1118847300100  20.025  2005.368  6452600.004   
23  1077  3212  637  1118847300100   7.393  2092.585  6452675.893   

             7     8    9   10    11    12  13  14    15  16  17  
1   1872022.536  12.5  5.0   2  59.6 -4.46   2   0  1083   0   0  
23  1871977.465  13.0  5.9   2  65.0  0.46   1   0  1082   0   0  
      0     1    2              3       4         5            6   \
2   1073  3213  587  1118847300200  19.973  2011.314  6452604.649   
24  1077  3213  637  1118847300200   7.392  2099.058  6452680.957   

             7     8    9   10     11    12  13  14    15  16  17  
2   1872018.817  12.5  5.0   2  59.14 -5.47   2   0  1083   0   0  
24  1871973.436  13.0  5.9   2  65.30  4.71   1   0  1082   0   0  
      0     1    2              3       4         5            6   \
3   1073  3214  587  1118847300300  19.886  2017.183  6452609.253   
25  1077  3214  637  1118847300300   7.375  2105.593  6452686.092   

             7     8    9   10     11    12  13  14    15  16  17  
3   1872015.175  12.5  5.0   2  58.78 -2.54   2   0  1083   0   0  
25  1871969.370  13.0  5.9   2  65.93  8.08   1   0  1082   0   0  
      0     1    2              3       4         5            6   \
4   1073  3215  587  1118847300400  19.817  2023.016  6452613.792   
26  1077  3215  637  1118847300400   7.387  2112.099  6452691.152   

             7     8    9   10     11    12  13  14    15  16  17  
4   1872011.563  12.5  5.0   2  58.78  2.52   2   0  1083   0   0  
26  1871965.322  13.0  5.9   2  65.93  0.00   1   0  1082   0   0  
      0     1    2              3       4         5            6   \
5   1073  3216  587  1118847300500  19.731  2028.885  6452618.396   
27  1077  3216  637  1118847300500   7.381  2119.098  6452696.629   

             7     8    9   10     11    12  13  14    15  16  17  
5   1872007.921  12.5  5.0   2  59.14  5.47   2   0  1083   0   0  
27  1871960.964  13.0  5.9   2  65.93  0.00   1   0  1082   0   0  
      0     1    2              3       4         5            6   \
6   1073  3217  587  1118847300600  19.678  2034.831  6452623.041   
28  1077  3217  637  1118847300600   7.377  2125.598  6452701.715   

             7     8    9   10     11    12  13  14    15  16  17  
6   1872004.202  12.5  5.0   2  59.60  4.46   2   0  1083   0   0  
28  1871956.916  13.0  5.9   2  65.93  0.00   1   0  1082   0   0  
     0     1    2              3       4         5            6            7   \
7  1073  3218  587  1118847300700  19.606  2040.831  6452627.759  1872000.448   

     8   9   10     11    12  13  14    15  16  17  
7  12.5   5   2  59.91  1.71   2   0  1083   0   0  
     0     1    2              3       4         5            6            7   \
8  1073  3219  587  1118847300800  19.535  2046.858  6452632.453  1871996.712   

     8   9   10    11    12  13  14    15  16  17  
8  12.5   5   2  59.9 -2.03   2   0  1083   0   0  
     0     1    2              3       4         5            6            7   \
9  1073  3220  587  1118847300900  19.464  2052.849  6452637.148  1871992.976   

     8   9   10    11    12  13  14    15  16  17  
9  12.5   5   2  59.6 -3.95   2   0  1083   0   0  
      0     1    2              3       4         5            6           7   \
10  1073  3221  587  1118847301000  19.393  2058.777  6452641.843  1871989.24   

      8   9   10     11    12  13  14    15  16  17  
10  12.5   5   2  59.39 -1.76   2   0  1083   0   0  
      0     1    2              3       4         5            6   \
11  1073  3222  587  1118847301100  19.383  2064.687  6452646.538   

             7     8   9   10     11    12  13  14    15  16  17  
11  1871985.504  12.5   5   2  59.39  1.79   2   0  1083   0   0  
      0     1    2              3       4         5            6   \
12  1073  3223  587  1118847301200  19.382  2070.617  6452651.233   

             7     8   9   10     11    12  13  14    15  16  17  
12  1871981.768  12.5   5   2  59.59  3.72   2   0  1083   0   0  
      0     1    2              3       4         5            6   \
13  1073  3224  587  1118847301300  19.383  2076.605  6452655.927   

             7     8   9   10     11    12  13  14    15  16  17  
13  1871978.031  12.5   5   2  59.88  1.98   2   0  1083   0   0  
      0     1    2              3       4         5            6   \
14  1073  3225  587  1118847301400  19.383  2082.618  6452660.622   

             7     8   9   10  11  12  13  14    15  16  17  
14  1871974.295  12.5   5   2  60   0   2   0  1083   0   0  
      0     1    2              3       4         5            6   \
15  1073  3226  587  1118847301500  19.382  2088.617  6452665.317   

             7     8   9   10     11    12  13  14    15  16  17  
15  1871970.559  12.5   5   2  60.01  0.12   2   0  1083   0   0  
      0     1    2              3       4         5            6   \
16  1073  3227  587  1118847301600  19.382  2094.618  6452670.012   

             7     8   9   10     11    12  13  14    15  16  17  
16  1871966.823  12.5   5   2  60.02  0.22   2   0  1083   0   0  
      0     1    2              3       4         5            6   \
17  1073  3228  587  1118847301700  19.381  2100.622  6452674.707   

             7     8   9   10     11   12  13  14    15  16  17  
17  1871963.087  12.5   5   2  60.04  0.1   2   0  1083   0   0  
      0     1    2              3      4         5            6            7   \
18  1073  3229  587  1118847301800  19.38  2106.627  6452679.402  1871959.351   

      8   9   10     11   12  13  14    15  16  17  
18  12.5   5   2  60.04 -0.1   2   0  1083   0   0  
      0     1    2              3       4         5            6   \
19  1073  3230  587  1118847301900  19.376  2112.631  6452684.096   

             7     8   9   10     11  12  13  14    15  16  17  
19  1871955.615  12.5   5   2  60.04   0   2   0  1083   0   0  
      0     1    2              3       4         5            6   \
20  1073  3231  587  1118847302000  19.372  2118.632  6452688.791   

             7     8   9   10     11  12  13  14    15  16  17  
20  1871951.878  12.5   5   2  60.04   0   2   0  1083   0   0  
      0     1    2              3       4         5            6   \
21  1073  3232  587  1118847302100  19.367  2124.632  6452693.486   

             7     8   9   10     11  12  13  14    15  16  17  
21  1871948.142  12.5   5   2  60.04   0   2   0  1083   0   0  

In [22]:
for i, group in data.groupby([3]):
    print i 
    print group[0]+group[1]


1118847300000
0     4284
22    4288
dtype: int64
1118847300100
1     4285
23    4289
dtype: int64
1118847300200
2     4286
24    4290
dtype: int64
1118847300300
3     4287
25    4291
dtype: int64
1118847300400
4     4288
26    4292
dtype: int64
1118847300500
5     4289
27    4293
dtype: int64
1118847300600
6     4290
28    4294
dtype: int64
1118847300700
7    4291
dtype: int64
1118847300800
8    4292
dtype: int64
1118847300900
9    4293
dtype: int64
1118847301000
10    4294
dtype: int64
1118847301100
11    4295
dtype: int64
1118847301200
12    4296
dtype: int64
1118847301300
13    4297
dtype: int64
1118847301400
14    4298
dtype: int64
1118847301500
15    4299
dtype: int64
1118847301600
16    4300
dtype: int64
1118847301700
17    4301
dtype: int64
1118847301800
18    4302
dtype: int64
1118847301900
19    4303
dtype: int64
1118847302000
20    4304
dtype: int64
1118847302100
21    4305
dtype: int64

In [29]:
parallel_coordinates(data,0)


Out[29]:
<matplotlib.axes._subplots.AxesSubplot at 0xb33d5f8>

In [ ]: