In [1]:
from pandas import Series, DataFrame
In [42]:
import pandas as pd
import numpy as np
In [3]:
obj = Series([4, 7, -5, 3])
In [4]:
obj
Out[4]:
In [5]:
obj.values
Out[5]:
In [6]:
obj.index
Out[6]:
In [7]:
obj2 = Series([4, 7, -5, 3], index=['d', 'b', 'a', 'c'])
In [8]:
obj2
Out[8]:
In [9]:
obj2.index
Out[9]:
In [10]:
obj2['a']
Out[10]:
In [11]:
obj2
Out[11]:
In [12]:
obj2[obj2 > 0]
Out[12]:
In [13]:
obj2 * 2
Out[13]:
In [14]:
sdata = {'Ohio': 35000, 'Texas': 71000, 'Oregon': 16000, 'Utah': 5000}
In [15]:
obj3 = Series(sdata)
In [16]:
obj3
Out[16]:
In [17]:
states = ['California', 'Ohio', 'Oregon', 'Texas']
In [18]:
obj4 = Series(sdata, index=states)
In [19]:
obj4
Out[19]:
In [20]:
pd.isnull(obj4)
Out[20]:
In [21]:
pd.notnull(obj4)
Out[21]:
In [22]:
obj4.isnull()
Out[22]:
In [23]:
obj3 + obj4
Out[23]:
In [24]:
obj4.name = 'population'
In [25]:
obj4.index.name = 'state'
In [26]:
obj4
Out[26]:
In [27]:
data = {'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada'],
'year': [2000, 2001, 2002, 2001, 2002],
'pop': [1.5, 1.7, 3.6, 2.4, 2.9]}
In [28]:
frame = DataFrame(data)
In [29]:
frame
Out[29]:
In [30]:
DataFrame(data, columns=['year', 'state', 'pop'])
Out[30]:
In [31]:
frame2 = DataFrame(data, columns=['year', 'state', 'pop', 'debt'],
index=['one', 'two', 'three', 'four', 'five'])
In [32]:
frame2
Out[32]:
In [33]:
frame2.columns
Out[33]:
In [34]:
frame2['state']
Out[34]:
In [36]:
frame2.state
Out[36]:
In [37]:
frame2.ix['three']
Out[37]:
In [38]:
frame2['debt'] = 16.5
In [39]:
frame2
Out[39]:
In [43]:
frame2['debt'] = np.arange(5.)
In [44]:
frame2
Out[44]:
In [45]:
frame2['eastern'] = frame2.state == 'Ohio'
In [46]:
frame2
Out[46]:
In [47]:
del frame2['eastern']
In [48]:
frame2.columns
Out[48]:
In [49]:
pop = {'Nevada': {2001: 2.4, 2002: 2.9}, 'Ohio': {2000: 1.5, 2001: 1.7, 2002: 3.6}}
In [50]:
frame3 = DataFrame(pop)
In [51]:
pop
Out[51]:
In [52]:
frame3
Out[52]:
In [53]:
frame3.T
Out[53]:
In [54]:
DataFrame(pop, index=[2001, 2002, 2003])
Out[54]:
In [55]:
frame3.values
Out[55]:
In [56]:
frame2.values
Out[56]:
In [ ]: