In [1]:
%reset


Once deleted, variables cannot be recovered. Proceed (y/[n])? y

In [1]:
%matplotlib inline

In [2]:
from pandas import Series, DataFrame
import pandas as pd
import numpy as np
import csv
import math
import matplotlib.pyplot as plt
from scipy.signal import hilbert, chirp
import scipy

In [3]:
c_dataset = ['Timestamp','vIDa', 'vIDb', 'dist_ab', 'v_a_Type', 'v_a_Vel', 'v_a_Lane', 'v_a_Pred', 'v_a_Foll', 'v_count', 'v_mean_vel',
         'delta_vel']

dataset = pd.read_table('D:\\zzzLola\\PhD\\DataSet\\US101\\test\\dataset.txt', sep='\t', header=None, names=c_dataset)

In [4]:
dataset.groupby(['vIDa']).mean()


Out[4]:
Timestamp vIDb dist_ab v_a_Type v_a_Vel v_a_Lane v_a_Pred v_a_Foll v_count v_mean_vel delta_vel
vIDa
1073 1.118847e+12 1176.158038 336.358825 2 18.189096 2.000000 0.000000 1083.000000 22 18.188940 1.560187e-04
1077 1.118847e+12 1174.572650 351.493100 2 19.986171 1.000000 0.000000 1082.000000 7 19.986171 1.312852e-10
1080 1.118847e+12 1176.740763 332.343251 2 18.027473 3.000000 0.000000 1084.000000 28 18.027505 -3.207551e-05
1081 1.118847e+12 1175.083436 344.489554 2 18.011786 5.000000 0.000000 1092.000000 14 18.011721 6.518059e-05
1082 1.118847e+12 1177.113718 326.420286 2 19.721311 1.000000 243.462048 1086.000000 31 19.721347 -3.530707e-05
1083 1.118847e+12 1180.003564 309.916909 2 17.496698 2.000000 427.171393 1088.000000 55 17.503389 -6.691370e-03
1084 1.118847e+12 1178.884708 317.103805 2 17.379457 3.000000 655.607044 1102.826506 46 17.379100 3.573666e-04
1086 1.118847e+12 1179.357192 309.692766 2 19.530572 1.000000 668.044649 1091.000000 50 19.529999 5.725960e-04
1087 1.118847e+12 1174.835597 345.337665 2 18.544505 4.000000 0.000000 1089.000000 12 18.544540 -3.522240e-05
1088 1.118847e+12 1181.950595 296.880684 2 17.375434 2.000000 840.076812 1094.000000 71 17.374931 5.029661e-04
1089 1.118847e+12 1176.663817 329.464889 2 18.974919 4.000000 464.339847 1096.302290 28 18.975433 -5.141714e-04
1090 1.118847e+12 1181.444812 300.054514 2 17.676650 4.000000 786.464799 1097.089370 67 17.674215 2.435672e-03
1091 1.118847e+12 1180.676076 296.935768 2 20.401889 1.000000 890.532141 1093.000000 61 20.401313 5.752095e-04
1092 1.118847e+12 1178.598604 315.124797 2 19.951022 5.000000 341.677332 1109.248012 44 19.950615 4.070529e-04
1093 1.118847e+12 1182.652550 285.658860 2 19.236542 1.000000 865.542794 1099.000000 77 19.232999 3.543240e-03
1094 1.118847e+12 1186.487934 271.106816 2 17.017484 2.000000 716.122478 1101.000000 108 17.016674 8.108481e-04
1095 1.118847e+12 1183.023489 288.860202 2 17.889427 3.000000 828.720265 1102.434551 80 17.886426 3.001300e-03
1096 1.118847e+12 1186.350691 273.688334 2 16.699546 4.000000 963.838352 1100.000000 107 16.700106 -5.603965e-04
1097 1.118847e+12 1183.789981 287.317719 2 16.835796 4.000000 851.155054 1096.899911 86 16.837896 -2.100595e-03
1098 1.118847e+12 1179.003551 310.252875 2 20.041814 4.123402 633.622159 1092.591442 48 20.045108 -3.294604e-03
1099 1.118847e+12 1185.488155 274.184957 2 17.908793 1.000000 843.142051 1104.000000 100 17.909591 -7.981808e-04
1100 1.118847e+12 1187.867557 265.886711 2 16.454565 4.000000 985.636429 1105.000000 119 16.457202 -2.636652e-03
1101 1.118847e+12 1188.506788 261.443867 2 16.938267 2.000000 952.867893 1106.451520 124 16.939407 -1.140484e-03
1102 1.118847e+12 1184.739399 277.704934 2 17.841296 3.221838 1002.712739 1104.559782 94 17.841792 -4.964854e-04
1103 1.118847e+12 1180.447791 296.310159 1 21.299586 3.016622 830.925131 1095.033243 60 21.299068 5.171151e-04
1104 1.118847e+12 1186.527673 265.529468 1 18.181508 1.000000 1007.416667 1109.000000 109 18.182550 -1.042573e-03
1105 1.118847e+12 1188.869793 259.364821 2 16.584718 4.000000 1030.569948 1108.000000 127 16.587216 -2.498125e-03
1106 1.118847e+12 1189.884793 254.123895 2 16.835398 2.073912 1012.452974 1114.392932 135 16.835120 2.779860e-04
1107 1.118847e+12 1186.502038 264.902863 2 18.379422 3.000000 808.688774 1112.000000 109 18.382879 -3.457168e-03
1108 1.118847e+12 1190.896358 252.430064 2 16.160598 4.000000 982.082710 1113.417499 143 16.158833 1.764443e-03
... ... ... ... ... ... ... ... ... ... ... ...
1518 1.118847e+12 1438.973023 245.949595 2 9.053011 4.000000 1510.000000 1249.514408 89 9.053382 -3.712866e-04
1519 1.118847e+12 1431.981276 248.663379 2 4.778391 2.000000 1515.000000 1304.468712 126 4.763710 1.468134e-02
1520 1.118847e+12 1437.863722 255.192922 2 6.178601 3.000000 1509.000000 1188.042525 95 6.181504 -2.903646e-03
1521 1.118847e+12 1419.007238 239.775677 2 4.632319 1.000000 1514.000000 1321.563309 195 4.622097 1.022280e-02
1522 1.118847e+12 1441.765603 253.410713 2 8.198611 4.000000 1518.000000 1230.185106 73 8.202335 -3.723935e-03
1523 1.118847e+12 1441.586087 259.764590 2 6.351451 3.000000 1520.000000 1034.049148 74 6.359281 -7.830541e-03
1524 1.118847e+12 1423.902250 243.030526 2 4.760581 1.000000 1521.000000 1308.173728 170 4.751599 8.981807e-03
1525 1.118847e+12 1444.179474 258.944555 2 8.608584 4.000000 1522.000000 1163.026055 59 8.611065 -2.480959e-03
1526 1.118847e+12 1435.289790 253.017573 2 4.441942 2.000000 1519.000000 1276.030694 108 4.432356 9.585380e-03
1527 1.118847e+12 1449.799759 270.388097 2 9.281081 5.000000 1517.000000 236.446182 26 9.280926 1.556498e-04
1528 1.118847e+12 1446.649696 266.618338 2 7.641552 4.000000 1525.000000 783.190964 45 7.640049 1.502491e-03
1529 1.118847e+12 1428.265189 248.602114 2 4.705480 1.000000 1524.000000 1160.112501 146 4.700726 4.754518e-03
1530 1.118847e+12 1454.443580 276.525135 2 7.598664 5.000000 1527.000000 0.000000 4 7.598664 0.000000e+00
1531 1.118847e+12 1450.291101 272.786228 2 7.101546 4.000000 1528.000000 602.608696 23 7.099190 2.356402e-03
1533 1.118847e+12 1434.647541 254.371196 2 4.784076 1.000000 1529.000000 1065.892812 111 4.784426 -3.505785e-04
1534 1.118847e+12 1438.664443 255.924714 2 4.296319 2.000000 1526.000000 1196.695886 90 4.290500 5.819024e-03
1535 1.118847e+12 1445.726605 268.911686 2 4.950514 3.000000 1523.000000 706.909545 50 4.950684 -1.696328e-04
1536 1.118847e+12 1453.006061 277.373880 2 5.055740 4.000000 1531.000000 0.000000 9 5.054261 1.478698e-03
1537 1.118847e+12 1450.244226 274.523406 2 4.804381 3.000000 1535.000000 470.264946 23 4.803648 7.330109e-04
1538 1.118847e+12 1442.159078 262.050999 2 4.629474 2.000000 1534.000000 947.617945 70 4.623206 6.267215e-03
1539 1.118847e+12 1440.948311 259.122453 2 5.283104 1.000000 1533.000000 1002.948513 77 5.279571 3.532275e-03
1540 1.118847e+12 1453.497219 278.248090 2 4.115444 3.000000 1537.000000 0.000000 7 4.115671 -2.266748e-04
1548 1.118847e+12 1446.781779 269.920113 2 5.286283 2.000000 1538.000000 361.871795 43 5.286862 -5.794057e-04
1549 1.118847e+12 1445.617247 266.942912 2 5.556044 1.000000 1539.000000 899.965318 50 5.555651 3.934544e-04
1551 1.118847e+12 1452.569758 276.168573 2 7.566355 2.000000 1548.000000 0.000000 10 7.566660 -3.052751e-04
1554 1.118847e+12 1449.055571 271.993761 2 5.981515 1.000000 1549.000000 108.294578 29 5.983960 -2.444314e-03
1556 1.118847e+12 1454.635659 278.072693 2 6.099048 1.000000 1554.000000 0.000000 2 6.099048 0.000000e+00
3106 1.118847e+12 1195.385831 207.576778 2 14.208946 5.000000 1024.853330 1157.000000 275 14.191488 1.745828e-02
3107 1.118847e+12 1189.892269 181.377341 2 16.075497 5.717336 825.210781 733.088515 227 16.053400 2.209694e-02
3108 1.118847e+12 1237.683229 207.850782 1 17.963004 1.744325 1174.208829 1220.368693 359 17.934143 2.886041e-02

369 rows × 11 columns


In [5]:
t_max = dataset['Timestamp'].max() 
t_min = dataset['Timestamp'].min()

In [6]:
axes = plt.gca()
axes.set_xlim([t_min,t_max])


Out[6]:
(1118847300000.0, 1118847399900.0)

In [7]:
vID_group = dataset.groupby(['vIDa'])

In [8]:
vID_info = vID_group['Timestamp', 'v_a_Vel']

In [ ]:


In [ ]:


In [9]:
plt.figure()
for i, group in dataset.groupby(['vIDa']):
    if i == 1280 or i == 1274:
        group.plot(x='Timestamp', y='v_a_Vel', title=str(i))


<matplotlib.figure.Figure at 0x98a46a0>

In [10]:
fig, ax = plt.subplots()
ax.margins(0.05) # Optional, just adds 5% padding to the autoscaling
for i, group in dataset.groupby(['vIDa']):
    #if i < 1200:
        #print i
    ax.plot(group.Timestamp, group.v_a_Vel, label = str(i))
#ax.legend()

plt.show()



In [11]:
fig, ax = plt.subplots()
ax.margins(0.05) # Optional, just adds 5% padding to the autoscaling
for i, group in dataset.groupby(['vIDa']):
    #if i < 1200:
        #print i
    ax.plot(group.Timestamp, group.delta_vel, label = str(i))
#ax.legend()

plt.show()



In [12]:
fig, ax = plt.subplots()
ax.margins(0.05) # Optional, just adds 5% padding to the autoscaling
for i, group in dataset.groupby(['vIDa']):
    if i < 1085:
        #print i
        ax.plot(group.Timestamp, group.v_a_Vel, label = str(i))
ax.legend()

plt.show()



In [13]:
fig, ax = plt.subplots()
ax.margins(0.05) # Optional, just adds 5% padding to the autoscaling
for i, group in dataset.groupby(['vIDa']):
    if i == 1280 or i == 1274:
        #print i
        ax.plot(group.Timestamp, group.delta_vel, label = str(i))
ax.legend()

plt.show()



In [14]:
fig, ax = plt.subplots()
ax.margins(0.05) # Optional, just adds 5% padding to the autoscaling
for i, group in dataset.groupby(['vIDa']):
    if i == 1280 or i == 1274:
        #print i
        ax.plot(group.Timestamp, group.v_a_Vel, label = str(i))
ax.legend()

plt.show()



In [15]:
dataset['delta_vel'].describe()


Out[15]:
count    15450296.000000
mean            0.028567
std             3.128589
min           -15.367954
25%            -1.959090
50%            -0.211304
75%             2.004130
max            16.426508
Name: delta_vel, dtype: float64

In [16]:
dataset[:10]


Out[16]:
Timestamp vIDa vIDb dist_ab v_a_Type v_a_Vel v_a_Lane v_a_Pred v_a_Foll v_count v_mean_vel delta_vel
0 1.118847e+12 1073 1077 26.760834 2 18.263616 2 0 1083 22 18.18894 0.074676
1 1.118847e+12 1073 1080 9.739521 2 18.263616 2 0 1083 22 18.18894 0.074676
2 1.118847e+12 1073 1081 19.198605 2 18.263616 2 0 1083 22 18.18894 0.074676
3 1.118847e+12 1073 1082 20.679750 2 18.263616 2 0 1083 22 18.18894 0.074676
4 1.118847e+12 1073 1083 56.396881 2 18.263616 2 0 1083 22 18.18894 0.074676
5 1.118847e+12 1073 1084 40.510313 2 18.263616 2 0 1083 22 18.18894 0.074676
6 1.118847e+12 1073 1086 56.592865 2 18.263616 2 0 1083 22 18.18894 0.074676
7 1.118847e+12 1073 1087 19.093697 2 18.263616 2 0 1083 22 18.18894 0.074676
8 1.118847e+12 1073 1088 83.171880 2 18.263616 2 0 1083 22 18.18894 0.074676
9 1.118847e+12 1073 1089 15.309671 2 18.263616 2 0 1083 22 18.18894 0.074676

In [17]:
dataset.groupby(['v_a_Lane','vIDa'])


Out[17]:
<pandas.core.groupby.DataFrameGroupBy object at 0x00000000455A4E80>

In [18]:
fig, ax = plt.subplots()
ax.margins(0.05) # Optional, just adds 5% padding to the autoscaling
for i, group in dataset.groupby(['v_a_Lane','vIDa']):
    if i[0] == 1:
    #print i[0]
        ax.plot(group.Timestamp, group.v_a_Vel, label = str(i[1]))
#ax.legend()

plt.show()



In [19]:
fig, ax = plt.subplots()
ax.margins(0.05) # Optional, just adds 5% padding to the autoscaling
for i, group in dataset.groupby(['v_a_Lane','vIDa']):
    if i[0] == 2:
    #print i[0]
        ax.plot(group.Timestamp, group.v_a_Vel, label = str(i[1]))
#ax.legend()

plt.show()



In [20]:
dataset[dataset['v_a_Vel'] == 0]


Out[20]:
Timestamp vIDa vIDb dist_ab v_a_Type v_a_Vel v_a_Lane v_a_Pred v_a_Foll v_count v_mean_vel delta_vel
1068977 1.118847e+12 1149 1094 237.260602 3 0 4 1136 1156 245 15.367954 -15.367954
1068978 1.118847e+12 1149 1096 240.314179 3 0 4 1136 1156 245 15.367954 -15.367954
1068979 1.118847e+12 1149 1099 253.064879 3 0 4 1136 1156 245 15.367954 -15.367954
1068980 1.118847e+12 1149 1100 217.963162 3 0 4 1136 1156 245 15.367954 -15.367954
1068981 1.118847e+12 1149 1101 208.736876 3 0 4 1136 1156 245 15.367954 -15.367954
1068982 1.118847e+12 1149 1104 233.741339 3 0 4 1136 1156 245 15.367954 -15.367954
1068983 1.118847e+12 1149 1105 201.264804 3 0 4 1136 1156 245 15.367954 -15.367954
1068984 1.118847e+12 1149 1106 187.050502 3 0 4 1136 1156 245 15.367954 -15.367954
1068985 1.118847e+12 1149 1107 233.327525 3 0 4 1136 1156 245 15.367954 -15.367954
1068986 1.118847e+12 1149 1108 173.078704 3 0 4 1136 1156 245 15.367954 -15.367954
1068987 1.118847e+12 1149 1109 172.407384 3 0 4 1136 1156 245 15.367954 -15.367954
1068988 1.118847e+12 1149 1110 182.501836 3 0 4 1136 1156 245 15.367954 -15.367954
1068989 1.118847e+12 1149 1112 209.813489 3 0 4 1136 1156 245 15.367954 -15.367954
1068990 1.118847e+12 1149 1113 154.089308 3 0 4 1136 1156 245 15.367954 -15.367954
1068991 1.118847e+12 1149 1114 126.673516 3 0 4 1136 1156 245 15.367954 -15.367954
1068992 1.118847e+12 1149 1115 139.483761 3 0 4 1136 1156 245 15.367954 -15.367954
1068993 1.118847e+12 1149 1116 123.819156 3 0 4 1136 1156 245 15.367954 -15.367954
1068994 1.118847e+12 1149 1119 99.663989 3 0 4 1136 1156 245 15.367954 -15.367954
1068995 1.118847e+12 1149 1120 112.472144 3 0 4 1136 1156 245 15.367954 -15.367954
1068996 1.118847e+12 1149 1121 104.223314 3 0 4 1136 1156 245 15.367954 -15.367954
1068997 1.118847e+12 1149 1122 134.936776 3 0 4 1136 1156 245 15.367954 -15.367954
1068998 1.118847e+12 1149 1123 102.117103 3 0 4 1136 1156 245 15.367954 -15.367954
1068999 1.118847e+12 1149 1124 82.354897 3 0 4 1136 1156 245 15.367954 -15.367954
1069000 1.118847e+12 1149 1125 99.893285 3 0 4 1136 1156 245 15.367954 -15.367954
1069001 1.118847e+12 1149 1126 77.957393 3 0 4 1136 1156 245 15.367954 -15.367954
1069002 1.118847e+12 1149 1127 71.433854 3 0 4 1136 1156 245 15.367954 -15.367954
1069003 1.118847e+12 1149 1128 81.405594 3 0 4 1136 1156 245 15.367954 -15.367954
1069004 1.118847e+12 1149 1129 51.286725 3 0 4 1136 1156 245 15.367954 -15.367954
1069005 1.118847e+12 1149 1130 56.599997 3 0 4 1136 1156 245 15.367954 -15.367954
1069006 1.118847e+12 1149 1131 55.395381 3 0 4 1136 1156 245 15.367954 -15.367954
... ... ... ... ... ... ... ... ... ... ... ... ...
15300609 1.118847e+12 1534 1512 48.478214 2 0 2 1526 1538 90 4.290500 -4.290500
15300610 1.118847e+12 1534 1513 60.927394 2 0 2 1526 1538 90 4.290500 -4.290500
15300611 1.118847e+12 1534 1514 67.609037 2 0 2 1526 1538 90 4.290500 -4.290500
15300612 1.118847e+12 1534 1515 39.614347 2 0 2 1526 1538 90 4.290500 -4.290500
15300613 1.118847e+12 1534 1517 28.936789 2 0 2 1526 1538 90 4.290500 -4.290500
15300614 1.118847e+12 1534 1518 39.147748 2 0 2 1526 1538 90 4.290500 -4.290500
15300615 1.118847e+12 1534 1519 18.890338 2 0 2 1526 1538 90 4.290500 -4.290500
15300616 1.118847e+12 1534 1520 19.071413 2 0 2 1526 1538 90 4.290500 -4.290500
15300617 1.118847e+12 1534 1521 50.233681 2 0 2 1526 1538 90 4.290500 -4.290500
15300618 1.118847e+12 1534 1522 21.182585 2 0 2 1526 1538 90 4.290500 -4.290500
15300619 1.118847e+12 1534 1523 8.323210 2 0 2 1526 1538 90 4.290500 -4.290500
15300620 1.118847e+12 1534 1524 40.812893 2 0 2 1526 1538 90 4.290500 -4.290500
15300621 1.118847e+12 1534 1525 11.991253 2 0 2 1526 1538 90 4.290500 -4.290500
15300622 1.118847e+12 1534 1526 8.723656 2 0 2 1526 1538 90 4.290500 -4.290500
15300623 1.118847e+12 1534 1527 19.403340 2 0 2 1526 1538 90 4.290500 -4.290500
15300624 1.118847e+12 1534 1528 9.580541 2 0 2 1526 1538 90 4.290500 -4.290500
15300625 1.118847e+12 1534 1529 28.166759 2 0 2 1526 1538 90 4.290500 -4.290500
15300626 1.118847e+12 1534 1530 37.384098 2 0 2 1526 1538 90 4.290500 -4.290500
15300627 1.118847e+12 1534 1531 23.779995 2 0 2 1526 1538 90 4.290500 -4.290500
15300628 1.118847e+12 1534 1533 13.091411 2 0 2 1526 1538 90 4.290500 -4.290500
15300629 1.118847e+12 1534 1535 15.120746 2 0 2 1526 1538 90 4.290500 -4.290500
15300630 1.118847e+12 1534 1536 34.844641 2 0 2 1526 1538 90 4.290500 -4.290500
15300631 1.118847e+12 1534 1537 27.416507 2 0 2 1526 1538 90 4.290500 -4.290500
15300632 1.118847e+12 1534 1538 7.680274 2 0 2 1526 1538 90 4.290500 -4.290500
15300633 1.118847e+12 1534 1539 3.656987 2 0 2 1526 1538 90 4.290500 -4.290500
15300634 1.118847e+12 1534 1540 36.581226 2 0 2 1526 1538 90 4.290500 -4.290500
15300635 1.118847e+12 1534 1548 17.940446 2 0 2 1526 1538 90 4.290500 -4.290500
15300636 1.118847e+12 1534 1549 13.299185 2 0 2 1526 1538 90 4.290500 -4.290500
15300637 1.118847e+12 1534 1551 31.843265 2 0 2 1526 1538 90 4.290500 -4.290500
15300638 1.118847e+12 1534 1554 22.810777 2 0 2 1526 1538 90 4.290500 -4.290500

17250 rows × 12 columns


In [21]:
vel0 = dataset[dataset['v_a_Vel'] == 0]

In [22]:
vel0[:10]


Out[22]:
Timestamp vIDa vIDb dist_ab v_a_Type v_a_Vel v_a_Lane v_a_Pred v_a_Foll v_count v_mean_vel delta_vel
1068977 1.118847e+12 1149 1094 237.260602 3 0 4 1136 1156 245 15.367954 -15.367954
1068978 1.118847e+12 1149 1096 240.314179 3 0 4 1136 1156 245 15.367954 -15.367954
1068979 1.118847e+12 1149 1099 253.064879 3 0 4 1136 1156 245 15.367954 -15.367954
1068980 1.118847e+12 1149 1100 217.963162 3 0 4 1136 1156 245 15.367954 -15.367954
1068981 1.118847e+12 1149 1101 208.736876 3 0 4 1136 1156 245 15.367954 -15.367954
1068982 1.118847e+12 1149 1104 233.741339 3 0 4 1136 1156 245 15.367954 -15.367954
1068983 1.118847e+12 1149 1105 201.264804 3 0 4 1136 1156 245 15.367954 -15.367954
1068984 1.118847e+12 1149 1106 187.050502 3 0 4 1136 1156 245 15.367954 -15.367954
1068985 1.118847e+12 1149 1107 233.327525 3 0 4 1136 1156 245 15.367954 -15.367954
1068986 1.118847e+12 1149 1108 173.078704 3 0 4 1136 1156 245 15.367954 -15.367954

In [23]:
vel0.groupby(['vIDa']).count()


Out[23]:
Timestamp vIDb dist_ab v_a_Type v_a_Vel v_a_Lane v_a_Pred v_a_Foll v_count v_mean_vel delta_vel
vIDa
1149 117 117 117 117 117 117 117 117 117 117 117
1274 240 240 240 240 240 240 240 240 240 240 240
1328 385 385 385 385 385 385 385 385 385 385 385
1347 1561 1561 1561 1561 1561 1561 1561 1561 1561 1561 1561
1389 3281 3281 3281 3281 3281 3281 3281 3281 3281 3281 3281
1397 3507 3507 3507 3507 3507 3507 3507 3507 3507 3507 3507
1431 4192 4192 4192 4192 4192 4192 4192 4192 4192 4192 4192
1443 2559 2559 2559 2559 2559 2559 2559 2559 2559 2559 2559
1471 129 129 129 129 129 129 129 129 129 129 129
1534 1279 1279 1279 1279 1279 1279 1279 1279 1279 1279 1279

In [24]:
vel0['Timestamp'].max()


Out[24]:
1118847399700.0

In [25]:
vel0['Timestamp'].min()


Out[25]:
1118847309500.0

In [26]:
v1149 = dataset['vIDa'] == 1149
v0 = dataset['v_a_Vel'] < 5
d0 = dataset['dist_ab'] < 50
dataset[v1149 & v0 & d0]


Out[26]:
Timestamp vIDa vIDb dist_ab v_a_Type v_a_Vel v_a_Lane v_a_Pred v_a_Foll v_count v_mean_vel delta_vel
1068655 1.118847e+12 1149 1129 46.787493 3 3.233928 4 1136 1156 245 15.367954 -12.134026
1068658 1.118847e+12 1149 1132 27.870894 3 3.233928 4 1136 1156 245 15.367954 -12.134026
1068660 1.118847e+12 1149 1134 27.055387 3 3.233928 4 1136 1156 245 15.367954 -12.134026
1068661 1.118847e+12 1149 1135 14.952611 3 3.233928 4 1136 1156 245 15.367954 -12.134026
1068662 1.118847e+12 1149 1136 49.334503 3 3.233928 4 1136 1156 245 15.367954 -12.134026
1068663 1.118847e+12 1149 1137 5.232251 3 3.233928 4 1136 1156 245 15.367954 -12.134026
1068664 1.118847e+12 1149 1138 12.629167 3 3.233928 4 1136 1156 245 15.367954 -12.134026
1068665 1.118847e+12 1149 1143 18.942788 3 3.233928 4 1136 1156 245 15.367954 -12.134026
1068666 1.118847e+12 1149 1144 16.847638 3 3.233928 4 1136 1156 245 15.367954 -12.134026
1068667 1.118847e+12 1149 1145 16.047411 3 3.233928 4 1136 1156 245 15.367954 -12.134026
1068668 1.118847e+12 1149 1146 22.298351 3 3.233928 4 1136 1156 245 15.367954 -12.134026
1068669 1.118847e+12 1149 1147 29.934643 3 3.233928 4 1136 1156 245 15.367954 -12.134026
1068670 1.118847e+12 1149 1148 33.758819 3 3.233928 4 1136 1156 245 15.367954 -12.134026
1068671 1.118847e+12 1149 1150 18.959026 3 3.233928 4 1136 1156 245 15.367954 -12.134026
1068672 1.118847e+12 1149 1152 41.156080 3 3.233928 4 1136 1156 245 15.367954 -12.134026
1068675 1.118847e+12 1149 1155 47.614436 3 3.233928 4 1136 1156 245 15.367954 -12.134026
1068742 1.118847e+12 1149 3106 33.656140 3 3.233928 4 1136 1156 245 15.367954 -12.134026
1068772 1.118847e+12 1149 1129 48.089707 3 1.173480 4 1136 1156 245 15.367954 -14.194474
1068775 1.118847e+12 1149 1132 29.358039 3 1.173480 4 1136 1156 245 15.367954 -14.194474
1068777 1.118847e+12 1149 1134 28.235367 3 1.173480 4 1136 1156 245 15.367954 -14.194474
1068778 1.118847e+12 1149 1135 15.605895 3 1.173480 4 1136 1156 245 15.367954 -14.194474
1068780 1.118847e+12 1149 1137 4.868633 3 1.173480 4 1136 1156 245 15.367954 -14.194474
1068781 1.118847e+12 1149 1138 13.537518 3 1.173480 4 1136 1156 245 15.367954 -14.194474
1068782 1.118847e+12 1149 1143 18.069284 3 1.173480 4 1136 1156 245 15.367954 -14.194474
1068783 1.118847e+12 1149 1144 15.827718 3 1.173480 4 1136 1156 245 15.367954 -14.194474
1068784 1.118847e+12 1149 1145 15.057941 3 1.173480 4 1136 1156 245 15.367954 -14.194474
1068785 1.118847e+12 1149 1146 23.689432 3 1.173480 4 1136 1156 245 15.367954 -14.194474
1068786 1.118847e+12 1149 1147 28.770616 3 1.173480 4 1136 1156 245 15.367954 -14.194474
1068787 1.118847e+12 1149 1148 32.865926 3 1.173480 4 1136 1156 245 15.367954 -14.194474
1068788 1.118847e+12 1149 1150 17.774308 3 1.173480 4 1136 1156 245 15.367954 -14.194474
... ... ... ... ... ... ... ... ... ... ... ... ...
1069007 1.118847e+12 1149 1132 32.937467 3 0.000000 4 1136 1156 245 15.367954 -15.367954
1069009 1.118847e+12 1149 1134 31.322200 3 0.000000 4 1136 1156 245 15.367954 -15.367954
1069010 1.118847e+12 1149 1135 17.552440 3 0.000000 4 1136 1156 245 15.367954 -15.367954
1069012 1.118847e+12 1149 1137 4.750929 3 0.000000 4 1136 1156 245 15.367954 -15.367954
1069013 1.118847e+12 1149 1138 16.041542 3 0.000000 4 1136 1156 245 15.367954 -15.367954
1069014 1.118847e+12 1149 1143 15.944823 3 0.000000 4 1136 1156 245 15.367954 -15.367954
1069015 1.118847e+12 1149 1144 13.222572 3 0.000000 4 1136 1156 245 15.367954 -15.367954
1069016 1.118847e+12 1149 1145 11.528343 3 0.000000 4 1136 1156 245 15.367954 -15.367954
1069017 1.118847e+12 1149 1146 27.113989 3 0.000000 4 1136 1156 245 15.367954 -15.367954
1069018 1.118847e+12 1149 1147 25.847682 3 0.000000 4 1136 1156 245 15.367954 -15.367954
1069019 1.118847e+12 1149 1148 30.456780 3 0.000000 4 1136 1156 245 15.367954 -15.367954
1069020 1.118847e+12 1149 1150 14.809209 3 0.000000 4 1136 1156 245 15.367954 -15.367954
1069021 1.118847e+12 1149 1152 37.799782 3 0.000000 4 1136 1156 245 15.367954 -15.367954
1069024 1.118847e+12 1149 1155 43.729000 3 0.000000 4 1136 1156 245 15.367954 -15.367954
1069092 1.118847e+12 1149 3106 29.969189 3 0.000000 4 1136 1156 245 15.367954 -15.367954
1069124 1.118847e+12 1149 1132 34.317538 3 2.225040 4 1136 1156 245 15.367954 -13.142914
1069126 1.118847e+12 1149 1134 32.534508 3 2.225040 4 1136 1156 245 15.367954 -13.142914
1069127 1.118847e+12 1149 1135 18.347134 3 2.225040 4 1136 1156 245 15.367954 -13.142914
1069129 1.118847e+12 1149 1137 5.042416 3 2.225040 4 1136 1156 245 15.367954 -13.142914
1069130 1.118847e+12 1149 1138 16.998561 3 2.225040 4 1136 1156 245 15.367954 -13.142914
1069131 1.118847e+12 1149 1143 15.259444 3 2.225040 4 1136 1156 245 15.367954 -13.142914
1069132 1.118847e+12 1149 1144 12.344703 3 2.225040 4 1136 1156 245 15.367954 -13.142914
1069133 1.118847e+12 1149 1145 10.104892 3 2.225040 4 1136 1156 245 15.367954 -13.142914
1069134 1.118847e+12 1149 1146 28.367865 3 2.225040 4 1136 1156 245 15.367954 -13.142914
1069135 1.118847e+12 1149 1147 24.814216 3 2.225040 4 1136 1156 245 15.367954 -13.142914
1069136 1.118847e+12 1149 1148 29.680068 3 2.225040 4 1136 1156 245 15.367954 -13.142914
1069137 1.118847e+12 1149 1150 13.720436 3 2.225040 4 1136 1156 245 15.367954 -13.142914
1069138 1.118847e+12 1149 1152 36.920495 3 2.225040 4 1136 1156 245 15.367954 -13.142914
1069141 1.118847e+12 1149 1155 42.713298 3 2.225040 4 1136 1156 245 15.367954 -13.142914
1069209 1.118847e+12 1149 3106 29.052431 3 2.225040 4 1136 1156 245 15.367954 -13.142914

79 rows × 12 columns


In [27]:
v1137 = dataset['vIDa'] == 1137
vIDb_1137 = dataset['vIDb'] == 1149
distvv = dataset['dist_ab'] == 15.973205


dataset[v1137 & vIDb_1137 & distvv]


Out[27]:
Timestamp vIDa vIDb dist_ab v_a_Type v_a_Vel v_a_Lane v_a_Pred v_a_Foll v_count v_mean_vel delta_vel

In [28]:
fig, ax = plt.subplots()
ax.margins(0.05) # Optional, just adds 5% padding to the autoscaling
for i, group in dataset.groupby(['v_a_Lane','vIDa']):
    if i[1] == 1149:
    #print i[0]
        ax.plot(group.Timestamp, group.v_a_Vel, label = str(i[0]))
ax.legend()

plt.show()



In [29]:
fig, ax = plt.subplots()
ax.margins(0.05) # Optional, just adds 5% padding to the autoscaling
for i, group in dataset.groupby(['v_a_Lane','vIDa']):
    if i[1] == 1274:
    #print i[0]
        ax.plot(group.Timestamp, group.v_a_Vel, label = str(i[0]))
ax.legend()

plt.show()



In [30]:
fig, ax = plt.subplots()
ax.margins(0.05) # Optional, just adds 5% padding to the autoscaling
for i, group in dataset.groupby(['v_a_Lane','vIDa']):
    if i[1] == 1328:
    #print i[0]
        ax.plot(group.Timestamp, group.v_a_Vel, label = str(i[0]))
ax.legend()

plt.show()



In [31]:
fig, ax = plt.subplots()
ax.margins(0.05) # Optional, just adds 5% padding to the autoscaling
for i, group in dataset.groupby(['v_a_Lane','vIDa']):
    if i[1] == 1347:
    #print i[0]
        ax.plot(group.Timestamp, group.v_a_Vel, label = str(i[0]))
ax.legend()

plt.show()



In [32]:
fig, ax = plt.subplots()
ax.margins(0.05) # Optional, just adds 5% padding to the autoscaling
for i, group in dataset.groupby(['v_a_Lane','vIDa']):
    if i[1] == 1389:
    #print i[0]
        ax.plot(group.Timestamp, group.v_a_Vel, label = str(i[0]))
ax.legend()

plt.show()



In [ ]: