In [42]:
import numpy as np

In [43]:
import pandas as pd

In [44]:
c_names = ['vID', 'frID', 'tFr','Timestamp', 'localX', 'localY', 'globalX','globalY', 'vLenght', 'vWidth', 'vType', 'veloc','accel', 'line', 'pred', 'foll', 'spac', 'headway', 'dateTime']

data = pd.read_table('D:\\zzzLola\\PhD\\DataSet\\US101\\test\\100ts.txt', sep='\t', header=None, names=c_names)

In [45]:
data.count


Out[45]:
<bound method DataFrame.count of          vID  frID  tFr      Timestamp  localX    localY      globalX  \
0       1073  3211  587  1118847300000  20.097  1999.367  6452595.286   
1       1073  3212  587  1118847300100  20.025  2005.368  6452600.004   
2       1073  3213  587  1118847300200  19.973  2011.314  6452604.649   
3       1073  3214  587  1118847300300  19.886  2017.183  6452609.253   
4       1073  3215  587  1118847300400  19.817  2023.016  6452613.792   
5       1073  3216  587  1118847300500  19.731  2028.885  6452618.396   
6       1073  3217  587  1118847300600  19.678  2034.831  6452623.041   
7       1073  3218  587  1118847300700  19.606  2040.831  6452627.759   
8       1073  3219  587  1118847300800  19.535  2046.858  6452632.453   
9       1073  3220  587  1118847300900  19.464  2052.849  6452637.148   
10      1073  3221  587  1118847301000  19.393  2058.777  6452641.843   
11      1073  3222  587  1118847301100  19.383  2064.687  6452646.538   
12      1073  3223  587  1118847301200  19.382  2070.617  6452651.233   
13      1073  3224  587  1118847301300  19.383  2076.605  6452655.927   
14      1073  3225  587  1118847301400  19.383  2082.618  6452660.622   
15      1073  3226  587  1118847301500  19.382  2088.617  6452665.317   
16      1073  3227  587  1118847301600  19.382  2094.618  6452670.012   
17      1073  3228  587  1118847301700  19.381  2100.622  6452674.707   
18      1073  3229  587  1118847301800  19.380  2106.627  6452679.402   
19      1073  3230  587  1118847301900  19.376  2112.631  6452684.096   
20      1073  3231  587  1118847302000  19.372  2118.632  6452688.791   
21      1073  3232  587  1118847302100  19.367  2124.632  6452693.486   
22      1077  3211  637  1118847300000   7.393  2086.090  6452670.807   
23      1077  3212  637  1118847300100   7.393  2092.585  6452675.893   
24      1077  3213  637  1118847300200   7.392  2099.058  6452680.957   
25      1077  3214  637  1118847300300   7.375  2105.593  6452686.092   
26      1077  3215  637  1118847300400   7.387  2112.099  6452691.152   
27      1077  3216  637  1118847300500   7.381  2119.098  6452696.629   
28      1077  3217  637  1118847300600   7.377  2125.598  6452701.715   
29      1080  3211  559  1118847300000  31.113  1969.918  6452565.130   
...      ...   ...  ...            ...     ...       ...          ...   
124625  3108  3699  359  1118847348800  13.705  1912.844  6452532.863   
124626  3108  3700  359  1118847348900  13.671  1920.024  6452538.357   
124627  3108  3701  359  1118847349000  13.715  1927.329  6452543.909   
124628  3108  3702  359  1118847349100  13.774  1934.705  6452549.520   
124629  3108  3703  359  1118847349200  13.816  1942.094  6452555.112   
124630  3108  3704  359  1118847349300  13.858  1949.466  6452560.704   
124631  3108  3705  359  1118847349400  13.901  1956.853  6452566.296   
124632  3108  3706  359  1118847349500  13.944  1964.221  6452571.888   
124633  3108  3707  359  1118847349600  13.986  1971.500  6452577.503   
124634  3108  3708  359  1118847349700  14.062  1978.699  6452583.053   
124635  3108  3709  359  1118847349800  14.244  1985.878  6452588.536   
124636  3108  3710  359  1118847349900  14.406  1993.149  6452594.076   
124637  3108  3711  359  1118847350000  14.595  2000.561  6452599.690   
124638  3108  3712  359  1118847350100  14.847  2008.085  6452605.362   
124639  3108  3713  359  1118847350200  15.064  2015.686  6452611.145   
124640  3108  3714  359  1118847350300  15.275  2023.307  6452616.905   
124641  3108  3715  359  1118847350400  15.485  2030.915  6452622.665   
124642  3108  3716  359  1118847350500  15.694  2038.533  6452628.425   
124643  3108  3717  359  1118847350600  15.904  2046.147  6452634.185   
124644  3108  3718  359  1118847350700  16.125  2053.696  6452639.969   
124645  3108  3719  359  1118847350800  16.369  2061.138  6452645.665   
124646  3108  3720  359  1118847350900  16.574  2068.451  6452651.306   
124647  3108  3721  359  1118847351000  16.739  2075.683  6452656.853   
124648  3108  3722  359  1118847351100  16.711  2082.911  6452662.508   
124649  3108  3723  359  1118847351200  16.686  2090.260  6452668.234   
124650  3108  3724  359  1118847351300  16.687  2097.765  6452674.097   
124651  3108  3725  359  1118847351400  16.689  2105.418  6452680.103   
124652  3108  3726  359  1118847351500  16.746  2113.184  6452686.167   
124653  3108  3727  359  1118847351600  16.741  2121.184  6452692.426   
124654  3108  3728  359  1118847351700  16.734  2129.183  6452698.686   

            globalY  vLenght  vWidth  vType  veloc  accel  line  pred  foll  \
0       1872026.290     12.5     5.0      2  59.92  -1.71     2     0  1083   
1       1872022.536     12.5     5.0      2  59.60  -4.46     2     0  1083   
2       1872018.817     12.5     5.0      2  59.14  -5.47     2     0  1083   
3       1872015.175     12.5     5.0      2  58.78  -2.54     2     0  1083   
4       1872011.563     12.5     5.0      2  58.78   2.52     2     0  1083   
5       1872007.921     12.5     5.0      2  59.14   5.47     2     0  1083   
6       1872004.202     12.5     5.0      2  59.60   4.46     2     0  1083   
7       1872000.448     12.5     5.0      2  59.91   1.71     2     0  1083   
8       1871996.712     12.5     5.0      2  59.90  -2.03     2     0  1083   
9       1871992.976     12.5     5.0      2  59.60  -3.95     2     0  1083   
10      1871989.240     12.5     5.0      2  59.39  -1.76     2     0  1083   
11      1871985.504     12.5     5.0      2  59.39   1.79     2     0  1083   
12      1871981.768     12.5     5.0      2  59.59   3.72     2     0  1083   
13      1871978.031     12.5     5.0      2  59.88   1.98     2     0  1083   
14      1871974.295     12.5     5.0      2  60.00   0.00     2     0  1083   
15      1871970.559     12.5     5.0      2  60.01   0.12     2     0  1083   
16      1871966.823     12.5     5.0      2  60.02   0.22     2     0  1083   
17      1871963.087     12.5     5.0      2  60.04   0.10     2     0  1083   
18      1871959.351     12.5     5.0      2  60.04  -0.10     2     0  1083   
19      1871955.615     12.5     5.0      2  60.04   0.00     2     0  1083   
20      1871951.878     12.5     5.0      2  60.04   0.00     2     0  1083   
21      1871948.142     12.5     5.0      2  60.04   0.00     2     0  1083   
22      1871981.512     13.0     5.9      2  64.98  -0.04     1     0  1082   
23      1871977.465     13.0     5.9      2  65.00   0.46     1     0  1082   
24      1871973.436     13.0     5.9      2  65.30   4.71     1     0  1082   
25      1871969.370     13.0     5.9      2  65.93   8.08     1     0  1082   
26      1871965.322     13.0     5.9      2  65.93   0.00     1     0  1082   
27      1871960.964     13.0     5.9      2  65.93   0.00     1     0  1082   
28      1871956.916     13.0     5.9      2  65.93   0.00     1     0  1082   
29      1872036.857     13.0     5.9      2  56.89  -5.70     3     0  1084   
...             ...      ...     ...    ...    ...    ...   ...   ...   ...   
124625  1872087.050      7.0     3.0      1  71.44   9.02     2  1215  1219   
124626  1872082.435      7.0     3.0      1  72.34  10.02     2  1215  1219   
124627  1872077.669      7.0     3.0      1  73.14   6.54     2  1215  1219   
124628  1872072.833      7.0     3.0      1  73.59   2.22     2  1215  1219   
124629  1872068.034      7.0     3.0      1  73.73  -0.17     2  1215  1219   
124630  1872063.236      7.0     3.0      1  73.72  -0.07     2  1215  1219   
124631  1872058.437      7.0     3.0      1  73.57  -2.32     2  1215  1219   
124632  1872053.638      7.0     3.0      1  73.11  -6.29     2  1215  1219   
124633  1872048.821      7.0     3.0      1  72.59  -5.91     2  1215  1219   
124634  1872044.050      7.0     3.0      1  72.34  -0.30     2  1215  1219   
124635  1872039.346      7.0     3.0      1  72.63   7.25     2  1215  1219   
124636  1872034.620      7.0     3.0      1  73.51  10.97     2  1215  1219   
124637  1872029.799      7.0     3.0      1  74.55  10.14     2  1215  1219   
124638  1872024.849      7.0     3.0      1  75.37   7.05     2  1215  1219   
124639  1872019.854      7.0     3.0      1  75.87   2.79     2  1215  1219   
124640  1872014.886      7.0     3.0      1  76.05   0.10     2  1215  1219   
124641  1872009.919      7.0     3.0      1  76.07   0.03     2     0  1215   
124642  1872004.952      7.0     3.0      1  75.96  -1.63     2     0  1215   
124643  1871999.985      7.0     3.0      1  75.54  -5.97     2     0  1215   
124644  1871994.985      7.0     3.0      1  74.81  -9.44     2     0  1215   
124645  1871990.050      7.0     3.0      1  73.88 -10.07     2     0  1215   
124646  1871985.299      7.0     3.0      1  73.07  -6.37     2     0  1215   
124647  1871980.673      7.0     3.0      1  72.79   0.00     2     0  1215   
124648  1871976.208      7.0     3.0      1  73.19   7.82     2     0  1215   
124649  1871971.683      7.0     3.0      1  74.25  11.20     2     0  1215   
124650  1871967.016      7.0     3.0      1  75.77  11.20     2     0  1215   
124651  1871962.233      7.0     3.0      1  77.35  11.20     2     0  1215   
124652  1871957.327      7.0     3.0      1  77.35   0.00     2     0  1215   
124653  1871952.345      7.0     3.0      1  77.35   0.00     2     0  1215   
124654  1871947.364      7.0     3.0      1  77.35   0.00     2     0  1215   

         spac  headway  dateTime  
0        0.00     0.00       NaN  
1        0.00     0.00       NaN  
2        0.00     0.00       NaN  
3        0.00     0.00       NaN  
4        0.00     0.00       NaN  
5        0.00     0.00       NaN  
6        0.00     0.00       NaN  
7        0.00     0.00       NaN  
8        0.00     0.00       NaN  
9        0.00     0.00       NaN  
10       0.00     0.00       NaN  
11       0.00     0.00       NaN  
12       0.00     0.00       NaN  
13       0.00     0.00       NaN  
14       0.00     0.00       NaN  
15       0.00     0.00       NaN  
16       0.00     0.00       NaN  
17       0.00     0.00       NaN  
18       0.00     0.00       NaN  
19       0.00     0.00       NaN  
20       0.00     0.00       NaN  
21       0.00     0.00       NaN  
22       0.00     0.00       NaN  
23       0.00     0.00       NaN  
24       0.00     0.00       NaN  
25       0.00     0.00       NaN  
26       0.00     0.00       NaN  
27       0.00     0.00       NaN  
28       0.00     0.00       NaN  
29       0.00     0.00       NaN  
...       ...      ...       ...  
124625  24.05     0.34       NaN  
124626  22.55     0.31       NaN  
124627  20.93     0.29       NaN  
124628  19.24     0.26       NaN  
124629  17.58     0.24       NaN  
124630  16.01     0.22       NaN  
124631  14.43     0.20       NaN  
124632  12.77     0.17       NaN  
124633  11.17     0.15       NaN  
124634   9.72     0.13       NaN  
124635   8.45     0.12       NaN  
124636   7.19     0.10       NaN  
124637   5.79     0.08       NaN  
124638   4.28     0.06       NaN  
124639   2.67     0.04       NaN  
124640   1.05     0.01       NaN  
124641   0.00     0.00       NaN  
124642   0.00     0.00       NaN  
124643   0.00     0.00       NaN  
124644   0.00     0.00       NaN  
124645   0.00     0.00       NaN  
124646   0.00     0.00       NaN  
124647   0.00     0.00       NaN  
124648   0.00     0.00       NaN  
124649   0.00     0.00       NaN  
124650   0.00     0.00       NaN  
124651   0.00     0.00       NaN  
124652   0.00     0.00       NaN  
124653   0.00     0.00       NaN  
124654   0.00     0.00       NaN  

[124655 rows x 19 columns]>

In [46]:
data[:10]


Out[46]:
vID frID tFr Timestamp localX localY globalX globalY vLenght vWidth vType veloc accel line pred foll spac headway dateTime
0 1073 3211 587 1118847300000 20.097 1999.367 6452595.286 1872026.290 12.5 5 2 59.92 -1.71 2 0 1083 0 0 NaN
1 1073 3212 587 1118847300100 20.025 2005.368 6452600.004 1872022.536 12.5 5 2 59.60 -4.46 2 0 1083 0 0 NaN
2 1073 3213 587 1118847300200 19.973 2011.314 6452604.649 1872018.817 12.5 5 2 59.14 -5.47 2 0 1083 0 0 NaN
3 1073 3214 587 1118847300300 19.886 2017.183 6452609.253 1872015.175 12.5 5 2 58.78 -2.54 2 0 1083 0 0 NaN
4 1073 3215 587 1118847300400 19.817 2023.016 6452613.792 1872011.563 12.5 5 2 58.78 2.52 2 0 1083 0 0 NaN
5 1073 3216 587 1118847300500 19.731 2028.885 6452618.396 1872007.921 12.5 5 2 59.14 5.47 2 0 1083 0 0 NaN
6 1073 3217 587 1118847300600 19.678 2034.831 6452623.041 1872004.202 12.5 5 2 59.60 4.46 2 0 1083 0 0 NaN
7 1073 3218 587 1118847300700 19.606 2040.831 6452627.759 1872000.448 12.5 5 2 59.91 1.71 2 0 1083 0 0 NaN
8 1073 3219 587 1118847300800 19.535 2046.858 6452632.453 1871996.712 12.5 5 2 59.90 -2.03 2 0 1083 0 0 NaN
9 1073 3220 587 1118847300900 19.464 2052.849 6452637.148 1871992.976 12.5 5 2 59.60 -3.95 2 0 1083 0 0 NaN

In [47]:
counts = data.groupby('vID').size()

In [48]:
counts


Out[48]:
vID
1073     22
1077      7
1080     28
1081     14
1082     31
1083     55
1084     46
1086     50
1087     12
1088     71
1089     28
1090     67
1091     61
1092     44
1093     77
1094    108
1095     80
1096    107
1097     86
1098     48
1099    100
1100    119
1101    124
1102     94
1103     60
1104    109
1105    127
1106    135
1107    109
1108    143
       ... 
1518     89
1519    126
1520     95
1521    195
1522     73
1523     74
1524    170
1525     59
1526    108
1527     26
1528     45
1529    146
1530      4
1531     23
1533    111
1534     90
1535     50
1536      9
1537     23
1538     70
1539     77
1540      7
1548     43
1549     50
1551     10
1554     29
1556      2
3106    275
3107    227
3108    359
dtype: int64

In [49]:
ids = pd.DataFrame(counts, columns = ['size'])

In [50]:
ids = ids[ids['size']>1]

In [51]:
ids.index


Out[51]:
Int64Index([1073, 1077, 1080, 1081, 1082, 1083, 1084, 1086, 1087, 1088,
            ...
            1539, 1540, 1548, 1549, 1551, 1554, 1556, 3106, 3107, 3108],
           dtype='int64', name=u'vID', length=369)

In [52]:
ids


Out[52]:
size
vID
1073 22
1077 7
1080 28
1081 14
1082 31
1083 55
1084 46
1086 50
1087 12
1088 71
1089 28
1090 67
1091 61
1092 44
1093 77
1094 108
1095 80
1096 107
1097 86
1098 48
1099 100
1100 119
1101 124
1102 94
1103 60
1104 109
1105 127
1106 135
1107 109
1108 143
... ...
1518 89
1519 126
1520 95
1521 195
1522 73
1523 74
1524 170
1525 59
1526 108
1527 26
1528 45
1529 146
1530 4
1531 23
1533 111
1534 90
1535 50
1536 9
1537 23
1538 70
1539 77
1540 7
1548 43
1549 50
1551 10
1554 29
1556 2
3106 275
3107 227
3108 359

369 rows × 1 columns


In [53]:
ids.describe()


Out[53]:
size
count 369.000000
mean 337.818428
std 168.073150
min 2.000000
25% 195.000000
50% 369.000000
75% 489.000000
max 600.000000

In [54]:
counts2 = data.groupby('Timestamp').size()

In [55]:
counts2.index


Out[55]:
Int64Index([1118847300000, 1118847300100, 1118847300200, 1118847300300,
            1118847300400, 1118847300500, 1118847300600, 1118847300700,
            1118847300800, 1118847300900,
            ...
            1118847399000, 1118847399100, 1118847399200, 1118847399300,
            1118847399400, 1118847399500, 1118847399600, 1118847399700,
            1118847399800, 1118847399900],
           dtype='int64', name=u'Timestamp', length=1000)

In [56]:
counts2.max()


Out[56]:
138

In [58]:
counts2.min()


Out[58]:
116

In [57]:
counts2.mean()


Out[57]:
124.655

In [29]:
counts3 = data.groupby(['Timestamp','vID']).mean()

In [30]:
counts3[350:351]


Out[30]:
frID tFr localX localY globalX globalY vLenght vWidth vType veloc accel line pred foll spac headway dateTime
Timestamp vID
1118846985300 14 64 515 50.008 175.623 6451208.678 1873218.081 24 8.5 3 39.54 7.76 5 0 18 0 0 NaN

In [31]:
t_v = pd.DataFrame(counts3, columns = ['frID', 'tFr', 'localX', 'localY', 'globalX','globalY', 'vLenght', 'vWidth', 
                                       'vType', 'veloc','accel', 'line', 'pred', 'foll', 'spac', 'headway'])

In [41]:
t_v[67777:67779]


Out[41]:
frID tFr localX localY globalX globalY vLenght vWidth vType veloc accel line pred foll spac headway
Timestamp vID
1118847058800 232 799 606 7.505 998.287 6451847.821 1872693.234 17 6.4 2 21.15 -0.06 1 223 239 48.93 2.31
233 799 438 50.605 1099.633 6451895.926 1872594.168 15 5.4 2 50.00 0.00 5 231 246 64.10 1.28

In [36]:
time_pres = data.groupby('tFr').size()

In [37]:
time_pres.describe


Out[37]:
<bound method Series.describe of tFr
177      177
178      178
245      245
246      246
250      250
251      251
253      253
254      254
255      510
258      258
259      518
260      260
261      261
263      789
264      264
268      804
269      269
270      270
271      813
273      273
275      275
276     1104
277      277
279      279
280     1120
282      282
283      566
284      284
286      858
287      287
        ... 
933     2799
935     1870
936      936
937      937
939      939
941     1882
942     1884
944      944
945      945
946     2838
947     1894
948     2844
951      951
952      952
954     2862
956      956
957      957
958      958
960     2880
961      961
962      962
964      964
965      965
967      967
968      968
975      975
977      977
979      979
986      986
1010    1010
dtype: int64>

In [38]:
time_pres.mean()


Out[38]:
1984.198319327731

In [ ]: