In [1]:
#%matplotlib inline

from pandas import Series, DataFrame
import pandas as pd
import numpy as np
import csv
import matplotlib as plt

In [2]:
c_names = ['vID', 'frID', 'tFr','Timestamp', 'localX', 'localY', 'globalX','globalY', 'vLenght', 'vWidth', 'vType', 
           'veloc','accel', 'line', 'pred', 'foll', 'spac', 'headway', 'dateTime']

In [3]:
data = pd.read_table('D:\\zzzLola\\PhD\\DataSet\\US101\\test\\dataset1DT.txt', sep='\t', header=None, names=c_names)

In [4]:
data[:50]


Out[4]:
vID frID tFr Timestamp localX localY globalX globalY vLenght vWidth vType veloc accel line pred foll spac headway dateTime
0 2 13 437 1118846980200 16.467 35.381 6451137.641 1873344.962 14.5 4.9 2 40.00 0.00 2 0 0 0 0 2005-06-15 14:49:40
1 2 14 437 1118846980300 16.447 39.381 6451140.329 1873342.000 14.5 4.9 2 40.00 0.00 2 0 0 0 0 2005-06-15 14:49:40
2 2 15 437 1118846980400 16.426 43.381 6451143.018 1873339.038 14.5 4.9 2 40.00 0.00 2 0 0 0 0 2005-06-15 14:49:40
3 2 16 437 1118846980500 16.405 47.380 6451145.706 1873336.077 14.5 4.9 2 40.00 0.00 2 0 0 0 0 2005-06-15 14:49:40
4 2 17 437 1118846980600 16.385 51.381 6451148.395 1873333.115 14.5 4.9 2 40.00 0.00 2 0 0 0 0 2005-06-15 14:49:40
5 2 18 437 1118846980700 16.364 55.381 6451151.084 1873330.153 14.5 4.9 2 40.00 0.00 2 0 0 0 0 2005-06-15 14:49:40
6 2 19 437 1118846980800 16.344 59.381 6451153.772 1873327.192 14.5 4.9 2 40.00 0.00 2 0 0 0 0 2005-06-15 14:49:40
7 2 20 437 1118846980900 16.323 63.379 6451156.461 1873324.230 14.5 4.9 2 40.02 0.25 2 0 0 0 0 2005-06-15 14:49:40
8 2 21 437 1118846981000 16.303 67.383 6451159.149 1873321.268 14.5 4.9 2 40.03 0.13 2 0 0 0 0 2005-06-15 14:49:41
9 2 22 437 1118846981100 16.282 71.398 6451161.838 1873318.307 14.5 4.9 2 39.93 -1.63 2 0 13 0 0 2005-06-15 14:49:41
10 2 23 437 1118846981200 16.262 75.401 6451164.546 1873315.323 14.5 4.9 2 39.61 -4.54 2 0 13 0 0 2005-06-15 14:49:41
11 2 24 437 1118846981300 16.254 79.349 6451167.199 1873312.382 14.5 4.9 2 39.14 -5.73 2 0 13 0 0 2005-06-15 14:49:41
12 2 25 437 1118846981400 16.221 83.233 6451169.802 1873309.533 14.5 4.9 2 38.61 -5.15 2 0 13 0 0 2005-06-15 14:49:41
13 2 26 437 1118846981500 16.201 87.043 6451172.358 1873306.719 14.5 4.9 2 38.28 -1.61 2 0 13 0 0 2005-06-15 14:49:41
14 2 27 437 1118846981600 16.169 90.829 6451174.961 1873303.870 14.5 4.9 2 38.42 3.73 2 0 13 0 0 2005-06-15 14:49:41
15 2 28 437 1118846981700 16.204 94.683 6451177.613 1873300.929 14.5 4.9 2 38.78 4.86 2 0 13 0 0 2005-06-15 14:49:41
16 2 29 437 1118846981800 16.252 98.611 6451180.342 1873297.924 14.5 4.9 2 38.92 0.00 2 0 13 0 0 2005-06-15 14:49:41
17 2 30 437 1118846981900 16.339 102.560 6451182.980 1873294.961 14.5 4.9 2 38.54 -8.59 2 0 13 0 0 2005-06-15 14:49:41
18 2 31 437 1118846982000 16.400 106.385 6451185.537 1873292.122 14.5 4.9 2 37.51 -11.20 2 0 13 0 0 2005-06-15 14:49:42
19 2 32 437 1118846982100 16.430 110.079 6451188.021 1873289.408 14.5 4.9 2 36.34 -10.86 2 0 13 0 0 2005-06-15 14:49:42
20 2 33 437 1118846982200 16.435 113.628 6451190.424 1873286.817 14.5 4.9 2 35.50 -6.20 2 0 13 0 0 2005-06-15 14:49:42
21 2 34 437 1118846982300 16.478 117.118 6451192.757 1873284.247 14.5 4.9 2 35.08 -1.89 2 0 13 0 0 2005-06-15 14:49:42
22 2 35 437 1118846982400 16.520 120.600 6451195.109 1873281.656 14.5 4.9 2 34.96 0.18 2 0 13 0 0 2005-06-15 14:49:42
23 2 36 437 1118846982500 16.562 124.096 6451197.462 1873279.065 14.5 4.9 2 34.98 0.25 2 0 13 0 0 2005-06-15 14:49:42
24 2 37 437 1118846982600 16.605 127.597 6451199.814 1873276.473 14.5 4.9 2 35.00 0.04 2 0 13 0 0 2005-06-15 14:49:42
25 2 38 437 1118846982700 16.647 131.099 6451202.167 1873273.882 14.5 4.9 2 34.99 -0.20 2 0 13 0 0 2005-06-15 14:49:42
26 2 39 437 1118846982800 16.691 134.595 6451204.519 1873271.290 14.5 4.9 2 34.98 -0.02 2 0 13 0 0 2005-06-15 14:49:42
27 2 40 437 1118846982900 16.727 138.081 6451206.879 1873268.700 14.5 4.9 2 35.10 1.95 2 0 13 0 0 2005-06-15 14:49:42
28 2 41 437 1118846983000 16.796 141.578 6451209.191 1873266.113 14.5 4.9 2 35.49 5.55 2 0 13 0 0 2005-06-15 14:49:43
29 2 42 437 1118846983100 16.795 145.131 6451211.610 1873263.514 14.5 4.9 2 36.20 8.99 2 0 13 0 0 2005-06-15 14:49:43
30 2 43 437 1118846983200 16.724 148.784 6451214.156 1873260.882 14.5 4.9 2 37.15 10.44 2 0 13 0 0 2005-06-15 14:49:43
31 2 44 437 1118846983300 16.588 152.559 6451216.824 1873258.213 14.5 4.9 2 38.12 9.30 2 0 13 0 0 2005-06-15 14:49:43
32 2 45 437 1118846983400 16.376 156.449 6451219.616 1873255.522 14.5 4.9 2 38.76 4.36 2 0 13 0 0 2005-06-15 14:49:43
33 2 46 437 1118846983500 16.064 160.379 6451222.548 1873252.829 14.5 4.9 2 38.95 -0.73 2 0 13 0 0 2005-06-15 14:49:43
34 2 47 437 1118846983600 15.763 164.277 6451225.462 1873250.139 14.5 4.9 2 38.95 -1.15 2 0 13 0 0 2005-06-15 14:49:43
35 2 48 437 1118846983700 15.471 168.150 6451228.376 1873247.450 14.5 4.9 2 38.99 1.90 2 0 13 0 0 2005-06-15 14:49:43
36 2 49 437 1118846983800 15.226 172.044 6451231.290 1873244.760 14.5 4.9 2 39.18 3.47 2 0 13 0 0 2005-06-15 14:49:43
37 2 50 437 1118846983900 14.979 176.000 6451234.204 1873242.071 14.5 4.9 2 39.34 0.02 2 0 13 0 0 2005-06-15 14:49:43
38 2 51 437 1118846984000 14.720 179.959 6451237.144 1873239.374 14.5 4.9 2 39.20 -3.52 2 0 13 0 0 2005-06-15 14:49:44
39 2 52 437 1118846984100 14.508 183.862 6451239.988 1873236.708 14.5 4.9 2 38.89 -3.28 2 0 13 0 0 2005-06-15 14:49:44
40 2 53 437 1118846984200 14.331 187.716 6451242.770 1873234.057 14.5 4.9 2 38.73 -0.33 2 0 13 0 0 2005-06-15 14:49:44
41 2 54 437 1118846984300 14.240 191.561 6451245.501 1873231.336 14.5 4.9 2 38.88 3.49 2 0 13 0 0 2005-06-15 14:49:44
42 2 55 437 1118846984400 14.309 195.455 6451248.125 1873228.494 14.5 4.9 2 39.28 5.00 2 0 13 0 0 2005-06-15 14:49:44
43 2 56 437 1118846984500 14.428 199.414 6451250.788 1873225.539 14.5 4.9 2 39.68 3.76 2 0 13 0 0 2005-06-15 14:49:44
44 2 57 437 1118846984600 14.540 203.417 6451253.489 1873222.554 14.5 4.9 2 39.94 1.29 2 0 13 0 0 2005-06-15 14:49:44
45 2 58 437 1118846984700 14.646 207.430 6451256.177 1873219.592 14.5 4.9 2 40.02 -0.22 2 0 13 0 0 2005-06-15 14:49:44
46 2 59 437 1118846984800 14.751 211.431 6451258.866 1873216.630 14.5 4.9 2 40.00 -0.21 2 0 13 0 0 2005-06-15 14:49:44
47 2 60 437 1118846984900 14.856 215.428 6451261.554 1873213.669 14.5 4.9 2 39.99 0.00 2 0 13 0 0 2005-06-15 14:49:44
48 2 61 437 1118846985000 14.962 219.427 6451264.243 1873210.707 14.5 4.9 2 39.99 0.00 2 0 13 0 0 2005-06-15 14:49:45
49 2 62 437 1118846985100 15.067 223.462 6451266.932 1873207.745 14.5 4.9 2 39.65 -5.35 2 0 13 0 0 2005-06-15 14:49:45

In [5]:
v_ts = DataFrame(data, columns=['vID', 'Timestamp'])

In [6]:
v_dt = DataFrame(data, columns=['vID', 'dateTime'])

In [7]:
v_ts[:10]


Out[7]:
vID Timestamp
0 2 1118846980200
1 2 1118846980300
2 2 1118846980400
3 2 1118846980500
4 2 1118846980600
5 2 1118846980700
6 2 1118846980800
7 2 1118846980900
8 2 1118846981000
9 2 1118846981100

In [8]:
v_dt[:10]


Out[8]:
vID dateTime
0 2 2005-06-15 14:49:40
1 2 2005-06-15 14:49:40
2 2 2005-06-15 14:49:40
3 2 2005-06-15 14:49:40
4 2 2005-06-15 14:49:40
5 2 2005-06-15 14:49:40
6 2 2005-06-15 14:49:40
7 2 2005-06-15 14:49:40
8 2 2005-06-15 14:49:41
9 2 2005-06-15 14:49:41

In [9]:
v_ts_gr = v_ts.groupby(['Timestamp']).size()
v_ts_gr


Out[9]:
Timestamp
1118846979700    1
1118846979800    1
1118846979900    1
1118846980000    1
1118846980100    1
1118846980200    2
1118846980300    2
1118846980400    2
1118846980500    2
1118846980600    2
1118846980700    2
1118846980800    2
1118846980900    2
1118846981000    2
1118846981100    3
1118846981200    3
1118846981300    3
1118846981400    3
1118846981500    3
1118846981600    3
1118846981700    3
1118846981800    4
1118846981900    4
1118846982000    4
1118846982100    5
1118846982200    5
1118846982300    5
1118846982400    5
1118846982500    5
1118846982600    6
                ..
1118847929600    1
1118847929700    1
1118847929800    1
1118847929900    1
1118847930000    1
1118847930100    1
1118847930200    1
1118847930300    1
1118847930400    1
1118847930500    1
1118847930600    1
1118847930700    1
1118847930800    1
1118847930900    1
1118847931000    1
1118847931100    1
1118847931200    1
1118847931300    1
1118847931400    1
1118847931500    1
1118847931600    1
1118847931700    1
1118847931800    1
1118847931900    1
1118847932000    1
1118847932100    1
1118847932200    1
1118847932300    1
1118847932400    1
1118847932500    1
dtype: int64

In [10]:
v_ts_gr.max()


Out[10]:
194

In [11]:
v_ts_gr.min()


Out[11]:
1

In [12]:
v_dt_gr = v_dt.groupby(['dateTime']).size()
v_dt_gr


Out[12]:
dateTime
2005-06-15 14:49:39      3
2005-06-15 14:49:40     18
2005-06-15 14:49:41     31
2005-06-15 14:49:42     55
2005-06-15 14:49:43     81
2005-06-15 14:49:44    118
2005-06-15 14:49:45    142
2005-06-15 14:49:46    167
2005-06-15 14:49:47    184
2005-06-15 14:49:48    210
2005-06-15 14:49:49    231
2005-06-15 14:49:50    257
2005-06-15 14:49:51    291
2005-06-15 14:49:52    326
2005-06-15 14:49:53    371
2005-06-15 14:49:54    407
2005-06-15 14:49:55    428
2005-06-15 14:49:56    466
2005-06-15 14:49:57    489
2005-06-15 14:49:58    528
2005-06-15 14:49:59    558
2005-06-15 14:50:00    580
2005-06-15 14:50:01    610
2005-06-15 14:50:02    631
2005-06-15 14:50:03    660
2005-06-15 14:50:04    687
2005-06-15 14:50:05    727
2005-06-15 14:50:06    754
2005-06-15 14:50:07    780
2005-06-15 14:50:08    820
                      ... 
2005-06-15 15:05:03    607
2005-06-15 15:05:04    594
2005-06-15 15:05:05    551
2005-06-15 15:05:06    519
2005-06-15 15:05:07    495
2005-06-15 15:05:08    475
2005-06-15 15:05:09    453
2005-06-15 15:05:10    440
2005-06-15 15:05:11    419
2005-06-15 15:05:12    392
2005-06-15 15:05:13    378
2005-06-15 15:05:14    348
2005-06-15 15:05:15    322
2005-06-15 15:05:16    290
2005-06-15 15:05:17    270
2005-06-15 15:05:18    256
2005-06-15 15:05:19    230
2005-06-15 15:05:20    214
2005-06-15 15:05:21    179
2005-06-15 15:05:22    159
2005-06-15 15:05:23    134
2005-06-15 15:05:24    117
2005-06-15 15:05:25     87
2005-06-15 15:05:26     48
2005-06-15 15:05:27     35
2005-06-15 15:05:28     19
2005-06-15 15:05:29     10
2005-06-15 15:05:30     10
2005-06-15 15:05:31     10
2005-06-15 15:05:32      6
dtype: int64

In [13]:
v_dt_gr.max()


Out[13]:
1926

In [14]:
v_dt_gr.min()


Out[14]:
3

In [15]:
data_mean = data.groupby(['vID', 'dateTime']).mean()

In [16]:
data_mean #Mean values for the data grouped by vID and dateTime


Out[16]:
frID tFr Timestamp localX localY globalX globalY vLenght vWidth vType veloc accel line pred foll spac headway
vID dateTime
2 2005-06-15 14:49:40 16.5 437 1.118847e+12 16.395125 49.380625 6451147.05075 1873334.595875 14.5 4.9 2 40.0025 0.03125 2.0 0.0 0.0 0.000 0.000
2005-06-15 14:49:41 25.5 437 1.118847e+12 16.248700 85.049000 6451171.07880 1873308.121600 14.5 4.9 2 39.0260 -1.85300 2.0 0.0 11.7 0.000 0.000
2005-06-15 14:49:42 35.5 437 1.118847e+12 16.549500 122.327800 6451196.26890 1873280.366000 14.5 4.9 2 35.4440 -2.79500 2.0 0.0 13.0 0.000 0.000
2005-06-15 14:49:43 45.5 437 1.118847e+12 16.078200 158.535100 6451221.32770 1873254.149300 14.5 4.9 2 38.1130 4.21500 2.0 0.0 13.0 0.000 0.000
2005-06-15 14:49:44 55.5 437 1.118847e+12 14.532900 197.567300 6451249.44020 1873226.795300 14.5 4.9 2 39.4610 0.59800 2.0 0.0 13.0 0.000 0.000
2005-06-15 14:49:45 65.5 437 1.118847e+12 15.562200 237.208600 6451276.55360 1873197.369400 14.5 4.9 2 39.8820 0.20500 2.0 0.0 13.0 0.000 0.000
2005-06-15 14:49:46 75.5 437 1.118847e+12 16.657900 278.598900 6451305.62580 1873167.561400 14.5 4.9 2 43.2380 3.94300 2.0 0.0 13.0 0.000 0.000
2005-06-15 14:49:47 85.5 437 1.118847e+12 16.130900 322.998400 6451337.91880 1873137.082800 14.5 4.9 2 44.8580 -0.37600 2.0 0.0 13.0 0.000 0.000
2005-06-15 14:49:48 95.5 437 1.118847e+12 16.430600 367.761600 6451370.43160 1873105.807000 14.5 4.9 2 45.4040 2.91600 2.0 0.0 13.0 0.000 0.000
2005-06-15 14:49:49 105.5 437 1.118847e+12 17.410300 413.588400 6451403.48850 1873073.998600 14.5 4.9 2 45.2830 -1.97200 2.0 0.0 13.0 0.000 0.000
2005-06-15 14:49:50 115.5 437 1.118847e+12 18.355500 458.081900 6451435.56690 1873043.150300 14.5 4.9 2 42.8700 -4.14000 2.0 0.0 13.0 0.000 0.000
2005-06-15 14:49:51 125.5 437 1.118847e+12 17.591300 499.134600 6451466.48710 1873015.865700 14.5 4.9 2 39.4340 -4.55300 2.0 0.0 13.0 0.000 0.000
2005-06-15 14:49:52 135.5 437 1.118847e+12 17.668100 535.880900 6451493.86300 1872991.230200 14.5 4.9 2 35.0050 0.26700 2.0 0.0 13.0 0.000 0.000
2005-06-15 14:49:53 145.5 437 1.118847e+12 18.431600 571.199700 6451519.68280 1872967.114800 14.5 4.9 2 35.5100 -0.44600 2.0 0.0 13.0 0.000 0.000
2005-06-15 14:49:54 155.5 437 1.118847e+12 18.072300 607.279700 6451546.81490 1872943.332100 14.5 4.9 2 37.7340 4.91800 2.0 0.0 13.0 0.000 0.000
2005-06-15 14:49:55 165.5 437 1.118847e+12 17.601300 646.529900 6451576.56980 1872917.526900 14.5 4.9 2 39.8910 0.67000 2.0 0.0 13.0 0.000 0.000
2005-06-15 14:49:56 175.5 437 1.118847e+12 17.327600 687.665400 6451607.68290 1872890.569600 14.5 4.9 2 43.2090 4.44000 2.0 0.0 13.0 0.000 0.000
2005-06-15 14:49:57 185.5 437 1.118847e+12 17.056600 732.249800 6451641.36670 1872861.358500 14.5 4.9 2 45.0000 0.00000 2.0 0.0 13.0 0.000 0.000
2005-06-15 14:49:58 195.5 437 1.118847e+12 16.456900 777.691900 6451675.89490 1872831.836900 14.5 4.9 2 47.3600 6.27500 2.0 0.0 13.0 0.000 0.000
2005-06-15 14:49:59 205.5 437 1.118847e+12 12.999600 827.392800 6451715.50400 1872801.608200 14.5 4.9 2 49.5740 -4.00800 1.6 0.0 11.8 0.000 0.000
2005-06-15 14:50:00 215.5 437 1.118847e+12 11.227900 876.678400 6451753.67560 1872770.389600 14.5 4.9 2 50.1240 1.66300 1.0 0.0 10.0 0.000 0.000
2005-06-15 14:50:01 225.5 437 1.118847e+12 11.653000 926.757400 6451791.11830 1872737.034000 14.5 4.9 2 50.0240 1.10400 1.0 0.0 10.0 0.000 0.000
2005-06-15 14:50:02 235.5 437 1.118847e+12 11.286600 978.255700 6451830.21380 1872703.530700 14.5 4.9 2 53.9120 6.47400 1.0 0.0 10.0 0.000 0.000
2005-06-15 14:50:03 245.5 437 1.118847e+12 10.747200 1034.549600 6451873.03330 1872666.971500 14.5 4.9 2 57.4660 0.42600 1.0 0.0 10.0 0.000 0.000
2005-06-15 14:50:04 255.5 437 1.118847e+12 10.852600 1092.173700 6451916.41590 1872629.039300 14.5 4.9 2 57.2380 -3.70400 1.0 0.0 10.0 0.000 0.000
2005-06-15 14:50:05 265.5 437 1.118847e+12 10.917100 1147.714700 6451958.25300 1872592.503000 14.5 4.9 2 53.3980 -5.01800 1.0 0.0 10.0 0.000 0.000
2005-06-15 14:50:06 275.5 437 1.118847e+12 9.421900 1198.508000 6451997.43920 1872560.216400 14.5 4.9 2 49.1990 -1.01400 1.0 0.0 10.0 0.000 0.000
2005-06-15 14:50:07 285.5 437 1.118847e+12 7.389700 1246.675700 6452035.00780 1872529.999700 14.5 4.9 2 47.2420 -0.03500 1.0 0.0 10.0 0.000 0.000
2005-06-15 14:50:08 295.5 437 1.118847e+12 6.532700 1292.783100 6452070.27370 1872500.239700 14.5 4.9 2 43.4340 -4.88900 1.0 0.0 10.0 0.000 0.000
2005-06-15 14:50:09 305.5 437 1.118847e+12 7.086300 1334.235300 6452101.14070 1872472.575300 14.5 4.9 2 40.6790 -1.01400 1.0 0.0 10.0 0.000 0.000
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
3109 2005-06-15 15:01:09 6905.5 510 1.118848e+12 49.965000 888.403500 6451736.90280 1872733.552300 14.0 5.9 2 34.1310 -4.18700 5.0 2311.0 2325.0 79.454 2.330
2005-06-15 15:01:10 6915.5 510 1.118848e+12 50.097200 919.969800 6451760.75510 1872712.487300 14.0 5.9 2 29.8300 -0.09200 5.0 2311.0 2325.0 80.560 2.700
2005-06-15 15:01:11 6925.5 510 1.118848e+12 50.344900 950.634800 6451783.75870 1872692.161600 14.0 5.9 2 32.1000 2.04000 5.0 2311.0 2325.0 84.541 2.637
2005-06-15 15:01:12 6935.5 510 1.118848e+12 50.598900 983.280300 6451808.22210 1872670.559400 14.0 5.9 2 32.8670 2.62200 5.0 2311.0 2325.0 89.826 2.733
2005-06-15 15:01:13 6945.5 510 1.118848e+12 50.866000 1017.322700 6451833.69170 1872648.036800 14.0 5.9 2 35.2980 1.57400 5.0 2311.0 2325.0 95.715 2.711
2005-06-15 15:01:14 6955.5 510 1.118848e+12 52.012800 1053.410300 6451860.14870 1872623.468100 14.0 5.9 2 36.2320 -0.85000 5.0 2311.0 2325.0 103.587 2.860
2005-06-15 15:01:15 6965.5 510 1.118848e+12 52.337400 1089.725600 6451887.31780 1872599.369300 14.0 5.9 2 36.9980 2.58300 5.0 2311.0 2325.0 108.337 2.929
2005-06-15 15:01:16 6975.5 510 1.118848e+12 52.399100 1127.495900 6451915.75410 1872574.515800 14.0 5.9 2 38.2040 0.78900 5.0 2311.0 2325.0 113.285 2.966
2005-06-15 15:01:17 6985.5 510 1.118848e+12 52.437200 1166.052400 6451944.72620 1872549.200600 14.0 5.9 2 38.4870 -1.95800 5.0 2311.0 2325.0 121.125 3.149
2005-06-15 15:01:18 6995.5 510 1.118848e+12 52.392700 1203.944000 6451973.20810 1872524.315700 14.0 5.9 2 38.1670 2.93400 5.0 2311.0 2325.0 129.573 3.393
2005-06-15 15:01:19 7005.5 510 1.118848e+12 52.860400 1245.317800 6452003.99960 1872496.713200 14.0 5.9 2 45.7870 5.21900 5.0 2311.0 2325.0 136.368 2.993
2005-06-15 15:01:20 7015.5 510 1.118848e+12 53.701300 1294.186700 6452040.24830 1872463.838800 14.0 5.9 2 50.5310 1.83700 5.0 2311.0 2325.0 132.987 2.633
2005-06-15 15:01:21 7025.5 510 1.118848e+12 53.600400 1343.669900 6452077.72920 1872431.288800 14.0 5.9 2 47.7830 -2.71600 5.0 2311.0 2325.0 126.986 2.658
2005-06-15 15:01:22 7035.5 510 1.118848e+12 53.584900 1390.746500 6452113.25010 1872400.401600 14.0 5.9 2 46.1320 -1.90600 5.0 2311.0 2325.0 122.004 2.647
2005-06-15 15:01:23 7045.5 510 1.118848e+12 53.590400 1436.208900 6452147.32030 1872370.650800 14.0 5.9 2 45.6390 2.64700 5.0 2311.0 2325.0 120.312 2.637
2005-06-15 15:01:24 7055.5 510 1.118848e+12 52.816100 1483.174400 6452183.06460 1872340.252700 14.0 5.9 2 47.6030 -2.62900 5.0 2311.0 2325.0 119.083 2.502
2005-06-15 15:01:25 7065.5 510 1.118848e+12 52.487700 1528.895100 6452217.63870 1872310.283900 14.0 5.9 2 44.2770 -0.75700 5.0 2311.0 2325.0 118.737 2.680
2005-06-15 15:01:26 7075.5 510 1.118848e+12 52.267000 1573.851200 6452251.92580 1872280.674500 14.0 5.9 2 45.1190 -1.93700 5.0 2311.0 2325.0 119.006 2.640
2005-06-15 15:01:27 7085.5 510 1.118848e+12 52.124300 1617.437700 6452284.94910 1872252.238300 14.0 5.9 2 42.3440 -1.95700 5.0 2311.0 2325.0 119.345 2.820
2005-06-15 15:01:28 7095.5 510 1.118848e+12 51.994000 1659.106200 6452315.98350 1872225.315800 14.0 5.9 2 40.8850 0.53700 5.0 2311.0 2325.0 123.311 3.019
2005-06-15 15:01:29 7105.5 510 1.118848e+12 52.304800 1701.418600 6452347.14940 1872197.036700 14.0 5.9 2 44.2220 0.80600 5.0 2311.0 2325.0 131.022 2.966
2005-06-15 15:01:30 7115.5 510 1.118848e+12 53.673400 1745.842200 6452380.39550 1872166.033800 14.0 5.9 2 44.9500 2.93900 5.0 2311.0 2325.0 135.906 3.027
2005-06-15 15:01:31 7125.5 510 1.118848e+12 54.282500 1792.645900 6452415.38420 1872135.121500 14.0 5.9 2 49.1280 4.05300 5.0 2311.0 2325.0 127.182 2.594
2005-06-15 15:01:32 7135.5 510 1.118848e+12 54.286800 1842.750100 6452453.03710 1872102.392900 14.0 5.9 2 50.7730 3.94100 5.0 2311.0 2325.0 125.474 2.473
2005-06-15 15:01:33 7145.5 510 1.118848e+12 55.083200 1894.847100 6452492.21000 1872067.357800 14.0 5.9 2 51.6420 -5.40400 5.0 2311.0 2325.0 122.174 2.368
2005-06-15 15:01:34 7155.5 510 1.118848e+12 56.154300 1944.137100 6452529.27700 1872034.430900 14.0 5.9 2 48.2410 -0.58000 5.0 2311.0 2325.0 122.702 2.545
2005-06-15 15:01:35 7165.5 510 1.118848e+12 57.547400 1991.812800 6452565.62420 1872002.176900 14.0 5.9 2 47.5150 0.81000 5.0 1617.7 2325.0 87.145 1.852
2005-06-15 15:01:36 7175.5 510 1.118848e+12 57.577900 2040.323800 6452603.40940 1871971.312000 14.0 5.9 2 48.8950 -0.17300 5.0 0.0 2325.0 0.000 0.000
2005-06-15 15:01:37 7185.5 510 1.118848e+12 57.414500 2089.593400 6452642.39610 1871940.193300 14.0 5.9 2 50.0930 3.07100 5.0 0.0 2325.0 0.000 0.000
2005-06-15 15:01:38 7191.5 510 1.118848e+12 57.405000 2120.135500 6452666.26100 1871921.199500 14.0 5.9 2 51.0300 0.00000 5.0 0.0 2325.0 0.000 0.000

120032 rows × 17 columns


In [17]:
num_v = data.groupby(['vID']).size()

In [18]:
num_v #foe vID how many times it appears


Out[18]:
vID
2       437
4       351
5       452
6       357
8       448
9       409
10      436
12      443
13      432
14      515
18      291
20      414
21      439
22      441
23      438
25      436
26      438
27      432
31      465
32      438
33      383
34      451
35      280
37      408
39      450
40      391
42      389
43      458
44      379
47      428
       ... 
3004    725
3005    726
3006    741
3007    853
3008    724
3009    732
3011    842
3014    676
3015    578
3018    714
3019    704
3021    678
3022    641
3023    403
3024    834
3025    644
3026    326
3030    667
3032    820
3033    633
3034    567
3101    255
3102    443
3103    461
3104    474
3105    534
3106    515
3107    282
3108    359
3109    510
dtype: int64

In [19]:
num_v.count() #num of different vehicles


Out[19]:
2169

In [20]:
data.describe()


Out[20]:
vID frID tFr Timestamp localX localY globalX globalY vLenght vWidth vType veloc accel line pred foll spac headway
count 1180598.000000 1180598.000000 1180598.00000 1.180598e+06 1180598.000000 1180598.000000 1180598.000000 1180598.000000 1180598.000000 1180598.000000 1180598.000000 1180598.000000 1180598.000000 1180598.000000 1180598.000000 1180598.000000 1180598.000000 1180598.000000
mean 1687.341261 4972.144159 585.54170 1.118847e+12 29.518502 983.008826 6451824.104109 1872689.857423 14.751878 6.145379 2.009898 37.496414 0.329052 2.965503 1603.584081 1610.456129 76.861747 166.340722
std 862.738747 2631.668242 160.25284 2.631668e+05 16.661830 594.629100 444.974278 395.885228 5.116659 1.027755 0.187414 14.875941 5.045285 1.468343 916.397282 916.845336 48.542040 1269.461537
min 2.000000 8.000000 177.00000 1.118847e+12 0.510000 0.000000 6451106.650000 1871874.940000 4.000000 2.000000 1.000000 0.000000 -11.200000 1.000000 0.000000 0.000000 0.000000 0.000000
25% 1023.000000 2705.000000 470.00000 1.118847e+12 17.338000 471.095500 6451438.148000 1872368.351500 12.500000 5.400000 2.000000 29.900000 -1.480000 2.000000 890.000000 898.000000 48.480000 1.490000
50% 1720.000000 5074.000000 541.00000 1.118847e+12 29.645000 932.115000 6451783.694000 1872720.025000 14.500000 6.000000 2.000000 39.250000 0.000000 3.000000 1657.000000 1662.000000 67.730000 2.020000
75% 2490.000000 7387.000000 687.00000 1.118848e+12 41.906000 1466.302250 6452185.333750 1873026.788750 16.500000 6.900000 2.000000 47.370000 2.380000 4.000000 2458.000000 2467.000000 95.780000 2.830000
max 3109.000000 9536.000000 1010.00000 1.118848e+12 73.475000 2195.462000 6452734.058000 1873372.900000 76.100000 8.500000 3.000000 95.300000 11.200000 8.000000 3109.000000 3109.000000 777.730000 9999.990000

In [21]:
v_dt.groupby(['dateTime'])


Out[21]:
<pandas.core.groupby.DataFrameGroupBy object at 0x00000000087962E8>

In [22]:
v_ts_gr.mean()


Out[22]:
123.89526707944171

In [ ]: