In [1]:
from environment import ex
import clades
import pandas as pd
import os

#create a new sacred object, which includes the config dictionary
n1e1p1b2_dict = ex.run(config_updates=\
                          {'population_size':30,\
                           'environment':'lab3000_n1e1p1b2',\
                           'max_train_time':120})
#create a new clade object, passing in the config dictionary
n1e1p1b2_clade = clades.GAFC1(n1e1p1b2_dict.config)

#loading the data creates train,test, and validation sets
#and also creates a folder to store the output of clade activity 
n1e1p1b2_clade.load_data()


Using TensorFlow backend.
WARNING - DLGn1e1p1 - No observers have been added to this run
INFO - DLGn1e1p1 - Running command 'main'
INFO - DLGn1e1p1 - Started
INFO - DLGn1e1p1 - Completed after 0:00:00
Vectorizing sequence data...
x_ shape: (8982, 10000)
46 classes
Converting class vector to binary class matrix (for use with categorical_crossentropy)
  • Initially the output folder is empty
  • Generations are 0-indexed

Generation0


In [2]:
n1e1p1b2_clade.current_generation


Out[2]:
0
  • spawn() creates a pandas dataframe of genes which 'encode' the model architectures of a given population
  • the dataframe is saved as a property and also pickled into the experiment folder
    • Note that the pickled dataframe file, and gene and model name includes reference to the generation (Gen0)

In [3]:
n1e1p1b2_clade.spawn()

In [4]:
n1e1p1b2_clade.genotypes


Out[4]:
LR activations batch_size epochs gene_name layer_units loss model_name nb_layers optimizer
0 0.091625 [relu, sigmoid, elu, sigmoid, hard_sigmoid, ta... 512 16 lab3000_n1e1p1b2+Gen0+gene0 [494, 283, 25, 33, 308, 95, 59, 186, 500] categorical_crossentropy lab3000_n1e1p1b2+Gen0+gene0+model.h5 9 RMSProp
0 0.001332 [softmax, sigmoid, softsign, hard_sigmoid, elu... 128 15 lab3000_n1e1p1b2+Gen0+gene1 [270, 367, 409, 280, 94, 345, 400, 452, 475, 1... categorical_crossentropy lab3000_n1e1p1b2+Gen0+gene1+model.h5 11 Nadam
0 0.053918 [softplus, hard_sigmoid, softplus] 32 19 lab3000_n1e1p1b2+Gen0+gene2 [14, 392, 25] categorical_crossentropy lab3000_n1e1p1b2+Gen0+gene2+model.h5 3 RMSProp
0 0.005913 [softplus, elu, elu, softmax, softsign, softma... 512 12 lab3000_n1e1p1b2+Gen0+gene3 [85, 216, 95, 39, 92, 466, 435, 399, 124, 197,... categorical_crossentropy lab3000_n1e1p1b2+Gen0+gene3+model.h5 12 Adamax
0 0.483776 [softmax, elu, softmax, softsign, softmax, lin... 128 2 lab3000_n1e1p1b2+Gen0+gene4 [511, 278, 417, 457, 37, 333, 331, 299, 16] categorical_crossentropy lab3000_n1e1p1b2+Gen0+gene4+model.h5 9 Adamax
0 0.053448 [tanh, hard_sigmoid, sigmoid, softsign, linear... 8 5 lab3000_n1e1p1b2+Gen0+gene5 [149, 159, 2, 125, 155, 351, 99, 384, 351, 263] categorical_crossentropy lab3000_n1e1p1b2+Gen0+gene5+model.h5 10 Adagrad
0 0.002698 [linear, softplus, relu] 512 9 lab3000_n1e1p1b2+Gen0+gene6 [139, 158, 491] categorical_crossentropy lab3000_n1e1p1b2+Gen0+gene6+model.h5 3 Adam
0 0.026426 [softplus, softmax, tanh, softsign, hard_sigmo... 16 15 lab3000_n1e1p1b2+Gen0+gene7 [487, 36, 144, 3, 250, 508, 244, 240, 490, 480... categorical_crossentropy lab3000_n1e1p1b2+Gen0+gene7+model.h5 12 sgd
0 0.119733 [tanh, softsign, softsign, softmax, sigmoid, r... 8 5 lab3000_n1e1p1b2+Gen0+gene8 [252, 481, 165, 512, 323, 85, 25, 415, 351, 123] categorical_crossentropy lab3000_n1e1p1b2+Gen0+gene8+model.h5 10 sgd
0 0.429790 [tanh, tanh, elu, relu, softsign, softmax, elu] 16 2 lab3000_n1e1p1b2+Gen0+gene9 [306, 484, 292, 411, 183, 127, 402] categorical_crossentropy lab3000_n1e1p1b2+Gen0+gene9+model.h5 7 Adam
0 0.129539 [sigmoid, softsign, hard_sigmoid, softplus, so... 32 13 lab3000_n1e1p1b2+Gen0+gene10 [62, 123, 424, 41, 32, 147, 178, 412, 161] categorical_crossentropy lab3000_n1e1p1b2+Gen0+gene10+model.h5 9 Adagrad
0 0.013870 [linear, hard_sigmoid] 128 16 lab3000_n1e1p1b2+Gen0+gene11 [4, 204] categorical_crossentropy lab3000_n1e1p1b2+Gen0+gene11+model.h5 2 Nadam
0 0.026689 [sigmoid, elu, elu, softmax, softsign, sigmoid] 64 5 lab3000_n1e1p1b2+Gen0+gene12 [130, 272, 291, 170, 511, 381] categorical_crossentropy lab3000_n1e1p1b2+Gen0+gene12+model.h5 6 RMSProp
0 0.002635 [softsign] 128 5 lab3000_n1e1p1b2+Gen0+gene13 [287] categorical_crossentropy lab3000_n1e1p1b2+Gen0+gene13+model.h5 1 Adam
0 0.442461 [hard_sigmoid, elu, tanh, hard_sigmoid, sigmoid] 8 19 lab3000_n1e1p1b2+Gen0+gene14 [444, 290, 174, 391, 327] categorical_crossentropy lab3000_n1e1p1b2+Gen0+gene14+model.h5 5 Adamax
0 0.344473 [softsign, relu, linear, hard_sigmoid, softmax... 32 6 lab3000_n1e1p1b2+Gen0+gene15 [343, 390, 472, 325, 386, 318, 162, 411, 357, ... categorical_crossentropy lab3000_n1e1p1b2+Gen0+gene15+model.h5 12 Adagrad
0 0.008660 [softsign, relu, relu, linear, elu, tanh, soft... 512 16 lab3000_n1e1p1b2+Gen0+gene16 [386, 378, 42, 114, 154, 287, 178, 101, 202, 2... categorical_crossentropy lab3000_n1e1p1b2+Gen0+gene16+model.h5 11 Adamax
0 0.318930 [elu, tanh, hard_sigmoid, sigmoid, elu, relu, ... 128 10 lab3000_n1e1p1b2+Gen0+gene17 [104, 482, 283, 188, 56, 473, 457, 90, 340, 28... categorical_crossentropy lab3000_n1e1p1b2+Gen0+gene17+model.h5 11 Nadam
0 0.004464 [softplus, softsign, softsign, sigmoid, sigmoi... 512 19 lab3000_n1e1p1b2+Gen0+gene18 [308, 456, 483, 16, 163, 106, 289, 242, 86, 20... categorical_crossentropy lab3000_n1e1p1b2+Gen0+gene18+model.h5 11 sgd
0 0.170069 [softplus, softmax, linear, tanh, softmax, sof... 32 6 lab3000_n1e1p1b2+Gen0+gene19 [292, 138, 107, 35, 338, 367, 313, 308, 133, 36] categorical_crossentropy lab3000_n1e1p1b2+Gen0+gene19+model.h5 10 Nadam
0 0.012467 [hard_sigmoid, elu, elu, softmax, softplus, so... 64 6 lab3000_n1e1p1b2+Gen0+gene20 [234, 304, 99, 323, 474, 201] categorical_crossentropy lab3000_n1e1p1b2+Gen0+gene20+model.h5 6 Adam
0 0.009289 [linear, linear, linear, hard_sigmoid, softsig... 256 16 lab3000_n1e1p1b2+Gen0+gene21 [130, 333, 452, 435, 469, 237, 468, 437, 266] categorical_crossentropy lab3000_n1e1p1b2+Gen0+gene21+model.h5 9 Adadelta
0 0.297231 [linear, linear, linear, softmax, linear, soft... 128 4 lab3000_n1e1p1b2+Gen0+gene22 [244, 29, 155, 505, 28, 328, 75] categorical_crossentropy lab3000_n1e1p1b2+Gen0+gene22+model.h5 7 RMSProp
0 0.281495 [sigmoid, softplus, softplus] 8 8 lab3000_n1e1p1b2+Gen0+gene23 [245, 282, 171] categorical_crossentropy lab3000_n1e1p1b2+Gen0+gene23+model.h5 3 Adamax
0 0.354097 [softplus, hard_sigmoid, elu] 8 9 lab3000_n1e1p1b2+Gen0+gene24 [416, 89, 497] categorical_crossentropy lab3000_n1e1p1b2+Gen0+gene24+model.h5 3 Adamax
0 0.252698 [softsign, relu, softmax, softsign, elu] 8 9 lab3000_n1e1p1b2+Gen0+gene25 [96, 345, 345, 198, 276] categorical_crossentropy lab3000_n1e1p1b2+Gen0+gene25+model.h5 5 Adam
0 0.034179 [elu, elu, softplus, hard_sigmoid, softmax, li... 32 2 lab3000_n1e1p1b2+Gen0+gene26 [245, 331, 431, 115, 97, 168, 235, 255, 247, 429] categorical_crossentropy lab3000_n1e1p1b2+Gen0+gene26+model.h5 10 Adadelta
0 0.006189 [hard_sigmoid, softplus, softsign, relu, hard_... 32 2 lab3000_n1e1p1b2+Gen0+gene27 [182, 150, 56, 501, 278, 406] categorical_crossentropy lab3000_n1e1p1b2+Gen0+gene27+model.h5 6 Nadam
0 0.394899 [softplus, softmax, hard_sigmoid, softplus] 512 17 lab3000_n1e1p1b2+Gen0+gene28 [462, 81, 243, 499] categorical_crossentropy lab3000_n1e1p1b2+Gen0+gene28+model.h5 4 Adam
0 0.334299 [sigmoid, softmax, softmax, sigmoid, elu, elu] 32 8 lab3000_n1e1p1b2+Gen0+gene29 [206, 375, 283, 394, 415, 271] categorical_crossentropy lab3000_n1e1p1b2+Gen0+gene29+model.h5 6 sgd
  • seed_models() acts as an intermediary between genotypes and model evaluations, which are executed in grow_models()
  • compiled models are saved as .h5 files in the experiment folder

In [5]:
n1e1p1b2_clade.seed_models()

In [6]:
n1e1p1b2_clade.grow_models()


this is the index:  0
and this is the gene:  LR                                                     0.0916252
activations    [relu, sigmoid, elu, sigmoid, hard_sigmoid, ta...
batch_size                                                   512
epochs                                                        16
gene_name                            lab3000_n1e1p1b2+Gen0+gene0
layer_units            [494, 283, 25, 33, 308, 95, 59, 186, 500]
loss                                    categorical_crossentropy
model_name                  lab3000_n1e1p1b2+Gen0+gene0+model.h5
nb_layers                                                      9
optimizer                                                RMSProp
Name: 0, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/16
8083/8083 [==============================] - 10s - loss: 2.5475 - acc: 0.3111 - val_loss: 2.3936 - val_acc: 0.3537
Epoch 2/16
8083/8083 [==============================] - 9s - loss: 2.2894 - acc: 0.3334 - val_loss: 1.9464 - val_acc: 0.3860
Epoch 3/16
8083/8083 [==============================] - 10s - loss: 1.9488 - acc: 0.3658 - val_loss: 1.9705 - val_acc: 0.2481
Epoch 4/16
8083/8083 [==============================] - 10s - loss: 1.9537 - acc: 0.3303 - val_loss: 1.9452 - val_acc: 0.3982
Epoch 5/16
8083/8083 [==============================] - 9s - loss: 1.8822 - acc: 0.3713 - val_loss: 1.9150 - val_acc: 0.3826
Epoch 6/16
8083/8083 [==============================] - 8s - loss: 1.8749 - acc: 0.3853 - val_loss: 1.9093 - val_acc: 0.3993
Epoch 7/16
8083/8083 [==============================] - 9s - loss: 1.9220 - acc: 0.3789 - val_loss: 1.9146 - val_acc: 0.3904
Epoch 8/16
8083/8083 [==============================] - 9s - loss: 1.8592 - acc: 0.3827 - val_loss: 1.9124 - val_acc: 0.3882
Epoch 9/16
8083/8083 [==============================] - 8s - loss: 1.8836 - acc: 0.3726 - val_loss: 1.9088 - val_acc: 0.4016
Epoch 10/16
8083/8083 [==============================] - 9s - loss: 1.8559 - acc: 0.3733 - val_loss: 2.0361 - val_acc: 0.3960
Epoch 11/16
8083/8083 [==============================] - 8s - loss: 1.8568 - acc: 0.3718 - val_loss: 1.9191 - val_acc: 0.3938
Epoch 12/16
8083/8083 [==============================] - 8s - loss: 1.8074 - acc: 0.3793 - val_loss: 1.8555 - val_acc: 0.4004
Epoch 13/16
7680/8083 [===========================>..] - ETA: 0s - loss: 1.7713 - acc: 0.3997_______Stopping after 120 seconds.
8083/8083 [==============================] - 8s - loss: 1.7755 - acc: 0.4005 - val_loss: 1.8739 - val_acc: 0.4194
2176/2246 [============================>.] - ETA: 0sthis is the index:  1
and this is the gene:  LR                                                    0.00133161
activations    [softmax, sigmoid, softsign, hard_sigmoid, elu...
batch_size                                                   128
epochs                                                        15
gene_name                            lab3000_n1e1p1b2+Gen0+gene1
layer_units    [270, 367, 409, 280, 94, 345, 400, 452, 475, 1...
loss                                    categorical_crossentropy
model_name                  lab3000_n1e1p1b2+Gen0+gene1+model.h5
nb_layers                                                     11
optimizer                                                  Nadam
Name: 0, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/15
8083/8083 [==============================] - 14s - loss: 2.5108 - acc: 0.3392 - val_loss: 2.4327 - val_acc: 0.3537
Epoch 2/15
8083/8083 [==============================] - 14s - loss: 2.4170 - acc: 0.3515 - val_loss: 2.4158 - val_acc: 0.3537
Epoch 3/15
8083/8083 [==============================] - 13s - loss: 2.4162 - acc: 0.3515 - val_loss: 2.4765 - val_acc: 0.2191
Epoch 4/15
8083/8083 [==============================] - 13s - loss: 2.4196 - acc: 0.3471 - val_loss: 2.4515 - val_acc: 0.3537
Epoch 5/15
8083/8083 [==============================] - 13s - loss: 2.4129 - acc: 0.3515 - val_loss: 2.4316 - val_acc: 0.3537
Epoch 6/15
8083/8083 [==============================] - 13s - loss: 2.4133 - acc: 0.3515 - val_loss: 2.4133 - val_acc: 0.3537
Epoch 7/15
8083/8083 [==============================] - 13s - loss: 2.4107 - acc: 0.3515 - val_loss: 2.4256 - val_acc: 0.3537
Epoch 8/15
8083/8083 [==============================] - 13s - loss: 2.4127 - acc: 0.3515 - val_loss: 2.4196 - val_acc: 0.3537
Epoch 9/15
8064/8083 [============================>.] - ETA: 0s - loss: 2.4097 - acc: 0.3516_______Stopping after 120 seconds.
8083/8083 [==============================] - 14s - loss: 2.4111 - acc: 0.3515 - val_loss: 2.4209 - val_acc: 0.3537
2246/2246 [==============================] - 1s     
in the else
this is the index:  2
and this is the gene:  LR                                        0.0539181
activations      [softplus, hard_sigmoid, softplus]
batch_size                                       32
epochs                                           19
gene_name               lab3000_n1e1p1b2+Gen0+gene2
layer_units                           [14, 392, 25]
loss                       categorical_crossentropy
model_name     lab3000_n1e1p1b2+Gen0+gene2+model.h5
nb_layers                                         3
optimizer                                   RMSProp
Name: 0, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/19
8083/8083 [==============================] - 4s - loss: 1.9948 - acc: 0.4982 - val_loss: 1.6111 - val_acc: 0.5884
Epoch 2/19
8083/8083 [==============================] - 3s - loss: 1.4908 - acc: 0.6520 - val_loss: 1.4678 - val_acc: 0.6607
Epoch 3/19
8083/8083 [==============================] - 3s - loss: 1.2644 - acc: 0.7063 - val_loss: 1.2968 - val_acc: 0.6930
Epoch 4/19
8083/8083 [==============================] - 3s - loss: 1.0797 - acc: 0.7450 - val_loss: 1.2022 - val_acc: 0.7230
Epoch 5/19
8083/8083 [==============================] - 3s - loss: 0.9359 - acc: 0.7823 - val_loss: 1.1710 - val_acc: 0.7353
Epoch 6/19
8083/8083 [==============================] - 3s - loss: 0.8107 - acc: 0.8103 - val_loss: 1.1720 - val_acc: 0.7397
Epoch 7/19
8083/8083 [==============================] - 3s - loss: 0.7132 - acc: 0.8306 - val_loss: 1.1732 - val_acc: 0.7353
Epoch 8/19
8083/8083 [==============================] - 3s - loss: 0.6283 - acc: 0.8512 - val_loss: 1.1979 - val_acc: 0.7531
Epoch 9/19
8083/8083 [==============================] - 3s - loss: 0.5569 - acc: 0.8695 - val_loss: 1.2244 - val_acc: 0.7486
Epoch 10/19
8083/8083 [==============================] - 3s - loss: 0.5027 - acc: 0.8815 - val_loss: 1.2890 - val_acc: 0.7475
Epoch 11/19
8083/8083 [==============================] - 3s - loss: 0.4559 - acc: 0.8963 - val_loss: 1.3194 - val_acc: 0.7631
Epoch 12/19
8083/8083 [==============================] - 3s - loss: 0.4114 - acc: 0.9060 - val_loss: 1.3820 - val_acc: 0.7508
Epoch 13/19
8083/8083 [==============================] - 3s - loss: 0.3764 - acc: 0.9161 - val_loss: 1.3915 - val_acc: 0.7664
Epoch 14/19
8083/8083 [==============================] - 3s - loss: 0.3498 - acc: 0.9217 - val_loss: 1.4739 - val_acc: 0.7408
Epoch 15/19
8083/8083 [==============================] - 3s - loss: 0.3232 - acc: 0.9260 - val_loss: 1.4873 - val_acc: 0.7464
Epoch 16/19
8083/8083 [==============================] - 3s - loss: 0.3045 - acc: 0.9313 - val_loss: 1.5670 - val_acc: 0.7508
Epoch 17/19
8083/8083 [==============================] - 3s - loss: 0.2810 - acc: 0.9369 - val_loss: 1.5833 - val_acc: 0.7508
Epoch 18/19
8083/8083 [==============================] - 3s - loss: 0.2667 - acc: 0.9379 - val_loss: 1.5898 - val_acc: 0.7386
Epoch 19/19
8083/8083 [==============================] - 3s - loss: 0.2480 - acc: 0.9430 - val_loss: 1.6500 - val_acc: 0.7375
2016/2246 [=========================>....] - ETA: 0sin the else
this is the index:  3
and this is the gene:  LR                                                    0.00591316
activations    [softplus, elu, elu, softmax, softsign, softma...
batch_size                                                   512
epochs                                                        12
gene_name                            lab3000_n1e1p1b2+Gen0+gene3
layer_units    [85, 216, 95, 39, 92, 466, 435, 399, 124, 197,...
loss                                    categorical_crossentropy
model_name                  lab3000_n1e1p1b2+Gen0+gene3+model.h5
nb_layers                                                     12
optimizer                                                 Adamax
Name: 0, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/12
8083/8083 [==============================] - 6s - loss: 2.5795 - acc: 0.3090 - val_loss: 2.4266 - val_acc: 0.3537
Epoch 2/12
8083/8083 [==============================] - 4s - loss: 2.4143 - acc: 0.3515 - val_loss: 2.4178 - val_acc: 0.3537
Epoch 3/12
8083/8083 [==============================] - 3s - loss: 2.4100 - acc: 0.3515 - val_loss: 2.4095 - val_acc: 0.3537
Epoch 4/12
8083/8083 [==============================] - 3s - loss: 2.4057 - acc: 0.3515 - val_loss: 2.4102 - val_acc: 0.3537
Epoch 5/12
8083/8083 [==============================] - 3s - loss: 2.4038 - acc: 0.3515 - val_loss: 2.4017 - val_acc: 0.3537
Epoch 6/12
8083/8083 [==============================] - 3s - loss: 2.3642 - acc: 0.3515 - val_loss: 2.2810 - val_acc: 0.3537
Epoch 7/12
8083/8083 [==============================] - 3s - loss: 2.0805 - acc: 0.5080 - val_loss: 1.9416 - val_acc: 0.5462
Epoch 8/12
8083/8083 [==============================] - 5s - loss: 1.9240 - acc: 0.5442 - val_loss: 1.9550 - val_acc: 0.5428
Epoch 9/12
8083/8083 [==============================] - 4s - loss: 1.9026 - acc: 0.5461 - val_loss: 1.9584 - val_acc: 0.5384
Epoch 10/12
8083/8083 [==============================] - 4s - loss: 1.8936 - acc: 0.5479 - val_loss: 1.9396 - val_acc: 0.5428
Epoch 11/12
8083/8083 [==============================] - 5s - loss: 1.8878 - acc: 0.5486 - val_loss: 1.9388 - val_acc: 0.5428
Epoch 12/12
8083/8083 [==============================] - 5s - loss: 1.8863 - acc: 0.5493 - val_loss: 1.9366 - val_acc: 0.5417
2240/2246 [============================>.] - ETA: 0sin the else
this is the index:  4
and this is the gene:  LR                                                      0.483776
activations    [softmax, elu, softmax, softsign, softmax, lin...
batch_size                                                   128
epochs                                                         2
gene_name                            lab3000_n1e1p1b2+Gen0+gene4
layer_units          [511, 278, 417, 457, 37, 333, 331, 299, 16]
loss                                    categorical_crossentropy
model_name                  lab3000_n1e1p1b2+Gen0+gene4+model.h5
nb_layers                                                      9
optimizer                                                 Adamax
Name: 0, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/2
8083/8083 [==============================] - 17s - loss: 3.0447 - acc: 0.2143 - val_loss: 2.6331 - val_acc: 0.3537
Epoch 2/2
8083/8083 [==============================] - 17s - loss: 2.5148 - acc: 0.3515 - val_loss: 2.4518 - val_acc: 0.3537
2246/2246 [==============================] - 2s     
in the else
this is the index:  5
and this is the gene:  LR                                                      0.053448
activations    [tanh, hard_sigmoid, sigmoid, softsign, linear...
batch_size                                                     8
epochs                                                         5
gene_name                            lab3000_n1e1p1b2+Gen0+gene5
layer_units      [149, 159, 2, 125, 155, 351, 99, 384, 351, 263]
loss                                    categorical_crossentropy
model_name                  lab3000_n1e1p1b2+Gen0+gene5+model.h5
nb_layers                                                     10
optimizer                                                Adagrad
Name: 0, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/5
8083/8083 [==============================] - 55s - loss: 3.1154 - acc: 0.3515 - val_loss: 2.8753 - val_acc: 0.3537
Epoch 2/5
8083/8083 [==============================] - 49s - loss: 2.7651 - acc: 0.3515 - val_loss: 2.6826 - val_acc: 0.3537
Epoch 3/5
8072/8083 [============================>.] - ETA: 0s - loss: 2.6279 - acc: 0.3512_______Stopping after 120 seconds.
8083/8083 [==============================] - 51s - loss: 2.6275 - acc: 0.3515 - val_loss: 2.5859 - val_acc: 0.3537
2112/2246 [===========================>..] - ETA: 0sin the else
this is the index:  6
and this is the gene:  LR                                       0.00269799
activations                [linear, softplus, relu]
batch_size                                      512
epochs                                            9
gene_name               lab3000_n1e1p1b2+Gen0+gene6
layer_units                         [139, 158, 491]
loss                       categorical_crossentropy
model_name     lab3000_n1e1p1b2+Gen0+gene6+model.h5
nb_layers                                         3
optimizer                                      Adam
Name: 0, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/9
8083/8083 [==============================] - 5s - loss: 2.3531 - acc: 0.4439 - val_loss: 1.8489 - val_acc: 0.5250
Epoch 2/9
8083/8083 [==============================] - 3s - loss: 1.5709 - acc: 0.6244 - val_loss: 1.4289 - val_acc: 0.6585
Epoch 3/9
8083/8083 [==============================] - 3s - loss: 1.1662 - acc: 0.7235 - val_loss: 1.1954 - val_acc: 0.7230
Epoch 4/9
8083/8083 [==============================] - 3s - loss: 0.8730 - acc: 0.8043 - val_loss: 1.0789 - val_acc: 0.7675
Epoch 5/9
8083/8083 [==============================] - 3s - loss: 0.6221 - acc: 0.8562 - val_loss: 1.0149 - val_acc: 0.7998
Epoch 6/9
8083/8083 [==============================] - 3s - loss: 0.4235 - acc: 0.9040 - val_loss: 1.0342 - val_acc: 0.7898
Epoch 7/9
8083/8083 [==============================] - 3s - loss: 0.2953 - acc: 0.9323 - val_loss: 1.0828 - val_acc: 0.8020
Epoch 8/9
8083/8083 [==============================] - 3s - loss: 0.2186 - acc: 0.9437 - val_loss: 1.1050 - val_acc: 0.8109
Epoch 9/9
8083/8083 [==============================] - 3s - loss: 0.1878 - acc: 0.9514 - val_loss: 1.1573 - val_acc: 0.7942
2240/2246 [============================>.] - ETA: 0sin the else
this is the index:  7
and this is the gene:  LR                                                     0.0264261
activations    [softplus, softmax, tanh, softsign, hard_sigmo...
batch_size                                                    16
epochs                                                        15
gene_name                            lab3000_n1e1p1b2+Gen0+gene7
layer_units    [487, 36, 144, 3, 250, 508, 244, 240, 490, 480...
loss                                    categorical_crossentropy
model_name                  lab3000_n1e1p1b2+Gen0+gene7+model.h5
nb_layers                                                     12
optimizer                                                    sgd
Name: 0, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/15
8083/8083 [==============================] - 47s - loss: 2.4910 - acc: 0.3473 - val_loss: 2.4242 - val_acc: 0.3537
Epoch 2/15
8083/8083 [==============================] - 43s - loss: 2.4110 - acc: 0.3509 - val_loss: 2.4147 - val_acc: 0.3537
Epoch 3/15
8080/8083 [============================>.] - ETA: 0s - loss: 2.4101 - acc: 0.3501_______Stopping after 120 seconds.
8083/8083 [==============================] - 42s - loss: 2.4100 - acc: 0.3500 - val_loss: 2.4427 - val_acc: 0.2191
2208/2246 [============================>.] - ETA: 0sin the else
this is the index:  8
and this is the gene:  LR                                                      0.119733
activations    [tanh, softsign, softsign, softmax, sigmoid, r...
batch_size                                                     8
epochs                                                         5
gene_name                            lab3000_n1e1p1b2+Gen0+gene8
layer_units     [252, 481, 165, 512, 323, 85, 25, 415, 351, 123]
loss                                    categorical_crossentropy
model_name                  lab3000_n1e1p1b2+Gen0+gene8+model.h5
nb_layers                                                     10
optimizer                                                    sgd
Name: 0, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/5
8083/8083 [==============================] - 49s - loss: 2.7437 - acc: 0.3509 - val_loss: 2.4582 - val_acc: 0.3537
Epoch 2/5
8083/8083 [==============================] - 49s - loss: 2.4306 - acc: 0.3515 - val_loss: 2.4244 - val_acc: 0.3537
Epoch 3/5
8080/8083 [============================>.] - ETA: 0s - loss: 2.4127 - acc: 0.3515_______Stopping after 120 seconds.
8083/8083 [==============================] - 48s - loss: 2.4129 - acc: 0.3515 - val_loss: 2.4157 - val_acc: 0.3537
2208/2246 [============================>.] - ETA: 0sin the else
this is the index:  9
and this is the gene:  LR                                                     0.42979
activations    [tanh, tanh, elu, relu, softsign, softmax, elu]
batch_size                                                  16
epochs                                                       2
gene_name                          lab3000_n1e1p1b2+Gen0+gene9
layer_units                [306, 484, 292, 411, 183, 127, 402]
loss                                  categorical_crossentropy
model_name                lab3000_n1e1p1b2+Gen0+gene9+model.h5
nb_layers                                                    7
optimizer                                                 Adam
Name: 0, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/2
8083/8083 [==============================] - 61s - loss: 2.4803 - acc: 0.3509 - val_loss: 2.4206 - val_acc: 0.3537
Epoch 2/2
8083/8083 [==============================] - 57s - loss: 2.4157 - acc: 0.3515 - val_loss: 2.4106 - val_acc: 0.3537
2240/2246 [============================>.] - ETA: 0sin the else
this is the index:  10
and this is the gene:  LR                                                      0.129539
activations    [sigmoid, softsign, hard_sigmoid, softplus, so...
batch_size                                                    32
epochs                                                        13
gene_name                           lab3000_n1e1p1b2+Gen0+gene10
layer_units           [62, 123, 424, 41, 32, 147, 178, 412, 161]
loss                                    categorical_crossentropy
model_name                 lab3000_n1e1p1b2+Gen0+gene10+model.h5
nb_layers                                                      9
optimizer                                                Adagrad
Name: 0, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/13
8083/8083 [==============================] - 9s - loss: 1.9186 - acc: 0.5165 - val_loss: 1.6574 - val_acc: 0.5651
Epoch 2/13
8083/8083 [==============================] - 9s - loss: 1.6197 - acc: 0.5804 - val_loss: 1.6199 - val_acc: 0.5795
Epoch 3/13
8083/8083 [==============================] - 8s - loss: 1.5370 - acc: 0.5988 - val_loss: 1.5924 - val_acc: 0.5851
Epoch 4/13
8083/8083 [==============================] - 8s - loss: 1.4227 - acc: 0.6250 - val_loss: 1.5311 - val_acc: 0.6029
Epoch 5/13
8083/8083 [==============================] - 8s - loss: 1.3285 - acc: 0.6436 - val_loss: 1.5157 - val_acc: 0.6018
Epoch 6/13
8083/8083 [==============================] - 8s - loss: 1.2590 - acc: 0.6658 - val_loss: 1.5830 - val_acc: 0.6007
Epoch 7/13
8083/8083 [==============================] - 9s - loss: 1.1973 - acc: 0.6853 - val_loss: 1.6707 - val_acc: 0.5862
Epoch 8/13
8083/8083 [==============================] - 8s - loss: 1.1488 - acc: 0.6976 - val_loss: 1.5600 - val_acc: 0.6118
Epoch 9/13
8083/8083 [==============================] - 8s - loss: 1.1016 - acc: 0.7058 - val_loss: 1.5905 - val_acc: 0.6085
Epoch 10/13
8083/8083 [==============================] - 8s - loss: 1.0613 - acc: 0.7143 - val_loss: 1.6894 - val_acc: 0.6118
Epoch 11/13
8083/8083 [==============================] - 8s - loss: 1.0257 - acc: 0.7205 - val_loss: 1.5813 - val_acc: 0.6073
Epoch 12/13
8083/8083 [==============================] - 8s - loss: 0.9973 - acc: 0.7287 - val_loss: 1.6717 - val_acc: 0.6051
Epoch 13/13
8083/8083 [==============================] - 8s - loss: 0.9723 - acc: 0.7319 - val_loss: 1.6255 - val_acc: 0.6185
2112/2246 [===========================>..] - ETA: 0sin the else
this is the index:  11
and this is the gene:  LR                                         0.0138704
activations                   [linear, hard_sigmoid]
batch_size                                       128
epochs                                            16
gene_name               lab3000_n1e1p1b2+Gen0+gene11
layer_units                                 [4, 204]
loss                        categorical_crossentropy
model_name     lab3000_n1e1p1b2+Gen0+gene11+model.h5
nb_layers                                          2
optimizer                                      Nadam
Name: 0, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/16
8083/8083 [==============================] - 2s - loss: 2.2925 - acc: 0.4367 - val_loss: 1.7502 - val_acc: 0.5706
Epoch 2/16
8083/8083 [==============================] - 1s - loss: 1.6002 - acc: 0.6237 - val_loss: 1.5419 - val_acc: 0.6285
Epoch 3/16
8083/8083 [==============================] - 1s - loss: 1.3726 - acc: 0.6966 - val_loss: 1.3848 - val_acc: 0.6830
Epoch 4/16
8083/8083 [==============================] - 1s - loss: 1.1485 - acc: 0.7336 - val_loss: 1.2658 - val_acc: 0.6941
Epoch 5/16
8083/8083 [==============================] - 1s - loss: 0.9803 - acc: 0.7605 - val_loss: 1.2052 - val_acc: 0.7075
Epoch 6/16
8083/8083 [==============================] - 1s - loss: 0.8489 - acc: 0.7857 - val_loss: 1.1698 - val_acc: 0.7241
Epoch 7/16
8083/8083 [==============================] - 1s - loss: 0.7378 - acc: 0.8138 - val_loss: 1.1702 - val_acc: 0.7353
Epoch 8/16
8083/8083 [==============================] - 1s - loss: 0.6486 - acc: 0.8362 - val_loss: 1.1627 - val_acc: 0.7397
Epoch 9/16
8083/8083 [==============================] - 1s - loss: 0.5742 - acc: 0.8520 - val_loss: 1.2034 - val_acc: 0.7330
Epoch 10/16
8083/8083 [==============================] - 1s - loss: 0.5129 - acc: 0.8664 - val_loss: 1.2283 - val_acc: 0.7330
Epoch 11/16
8083/8083 [==============================] - 1s - loss: 0.4617 - acc: 0.8774 - val_loss: 1.2634 - val_acc: 0.7286
Epoch 12/16
8083/8083 [==============================] - 1s - loss: 0.4199 - acc: 0.8884 - val_loss: 1.3257 - val_acc: 0.7208
Epoch 13/16
8083/8083 [==============================] - 1s - loss: 0.3828 - acc: 0.8977 - val_loss: 1.3328 - val_acc: 0.7253
Epoch 14/16
8083/8083 [==============================] - 1s - loss: 0.3521 - acc: 0.9083 - val_loss: 1.3558 - val_acc: 0.7286
Epoch 15/16
8083/8083 [==============================] - 1s - loss: 0.3265 - acc: 0.9138 - val_loss: 1.4054 - val_acc: 0.7308
Epoch 16/16
8083/8083 [==============================] - 1s - loss: 0.3047 - acc: 0.9180 - val_loss: 1.4507 - val_acc: 0.7230
2176/2246 [============================>.] - ETA: 0sin the else
this is the index:  12
and this is the gene:  LR                                                   0.0266889
activations    [sigmoid, elu, elu, softmax, softsign, sigmoid]
batch_size                                                  64
epochs                                                       5
gene_name                         lab3000_n1e1p1b2+Gen0+gene12
layer_units                     [130, 272, 291, 170, 511, 381]
loss                                  categorical_crossentropy
model_name               lab3000_n1e1p1b2+Gen0+gene12+model.h5
nb_layers                                                    6
optimizer                                              RMSProp
Name: 0, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/5
8083/8083 [==============================] - 10s - loss: 2.0162 - acc: 0.4612 - val_loss: 2.0235 - val_acc: 0.4383
Epoch 2/5
8083/8083 [==============================] - 9s - loss: 1.6416 - acc: 0.5735 - val_loss: 2.1175 - val_acc: 0.3782
Epoch 3/5
8083/8083 [==============================] - 9s - loss: 1.5256 - acc: 0.6117 - val_loss: 1.5800 - val_acc: 0.5996
Epoch 4/5
8083/8083 [==============================] - 9s - loss: 1.3671 - acc: 0.6531 - val_loss: 1.5344 - val_acc: 0.6307
Epoch 5/5
8083/8083 [==============================] - 9s - loss: 1.2201 - acc: 0.6833 - val_loss: 1.3904 - val_acc: 0.6574
2112/2246 [===========================>..] - ETA: 0sin the else
this is the index:  13
and this is the gene:  LR                                        0.00263484
activations                               [softsign]
batch_size                                       128
epochs                                             5
gene_name               lab3000_n1e1p1b2+Gen0+gene13
layer_units                                    [287]
loss                        categorical_crossentropy
model_name     lab3000_n1e1p1b2+Gen0+gene13+model.h5
nb_layers                                          1
optimizer                                       Adam
Name: 0, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/5
8083/8083 [==============================] - 10s - loss: 1.5607 - acc: 0.6755 - val_loss: 0.9889 - val_acc: 0.7953
Epoch 2/5
8083/8083 [==============================] - 9s - loss: 0.5990 - acc: 0.8790 - val_loss: 0.8006 - val_acc: 0.8287
Epoch 3/5
8083/8083 [==============================] - 9s - loss: 0.3286 - acc: 0.9322 - val_loss: 0.7863 - val_acc: 0.8276
Epoch 4/5
8083/8083 [==============================] - 9s - loss: 0.2217 - acc: 0.9478 - val_loss: 0.7881 - val_acc: 0.8309
Epoch 5/5
8083/8083 [==============================] - 9s - loss: 0.1713 - acc: 0.9527 - val_loss: 0.8174 - val_acc: 0.8242
2144/2246 [===========================>..] - ETA: 0sin the else
this is the index:  14
and this is the gene:  LR                                                     0.442461
activations    [hard_sigmoid, elu, tanh, hard_sigmoid, sigmoid]
batch_size                                                    8
epochs                                                       19
gene_name                          lab3000_n1e1p1b2+Gen0+gene14
layer_units                           [444, 290, 174, 391, 327]
loss                                   categorical_crossentropy
model_name                lab3000_n1e1p1b2+Gen0+gene14+model.h5
nb_layers                                                     5
optimizer                                                Adamax
Name: 0, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/19
8080/8083 [============================>.] - ETA: 0s - loss: 1.8570 - acc: 0.5272_______Stopping after 120 seconds.
8083/8083 [==============================] - 124s - loss: 1.8566 - acc: 0.5274 - val_loss: 1.5781 - val_acc: 0.6007
2208/2246 [============================>.] - ETA: 0sin the else
this is the index:  15
and this is the gene:  LR                                                      0.344473
activations    [softsign, relu, linear, hard_sigmoid, softmax...
batch_size                                                    32
epochs                                                         6
gene_name                           lab3000_n1e1p1b2+Gen0+gene15
layer_units    [343, 390, 472, 325, 386, 318, 162, 411, 357, ...
loss                                    categorical_crossentropy
model_name                 lab3000_n1e1p1b2+Gen0+gene15+model.h5
nb_layers                                                     12
optimizer                                                Adagrad
Name: 0, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/6
8083/8083 [==============================] - 33s - loss: 2.4360 - acc: 0.3502 - val_loss: 2.4112 - val_acc: 0.3537
Epoch 2/6
8083/8083 [==============================] - 32s - loss: 2.4067 - acc: 0.3515 - val_loss: 2.4088 - val_acc: 0.3537
Epoch 3/6
8083/8083 [==============================] - 32s - loss: 2.4051 - acc: 0.3515 - val_loss: 2.4094 - val_acc: 0.3537
Epoch 4/6
8064/8083 [============================>.] - ETA: 0s - loss: 2.4051 - acc: 0.3516_______Stopping after 120 seconds.
8083/8083 [==============================] - 32s - loss: 2.4047 - acc: 0.3515 - val_loss: 2.4089 - val_acc: 0.3537
2208/2246 [============================>.] - ETA: 0sin the else
this is the index:  16
and this is the gene:  LR                                                    0.00865982
activations    [softsign, relu, relu, linear, elu, tanh, soft...
batch_size                                                   512
epochs                                                        16
gene_name                           lab3000_n1e1p1b2+Gen0+gene16
layer_units    [386, 378, 42, 114, 154, 287, 178, 101, 202, 2...
loss                                    categorical_crossentropy
model_name                 lab3000_n1e1p1b2+Gen0+gene16+model.h5
nb_layers                                                     11
optimizer                                                 Adamax
Name: 0, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/16
8083/8083 [==============================] - 9s - loss: 3.7701 - acc: 0.2493 - val_loss: 3.7224 - val_acc: 0.3537
Epoch 2/16
8083/8083 [==============================] - 8s - loss: 3.6954 - acc: 0.3515 - val_loss: 3.6631 - val_acc: 0.3537
Epoch 3/16
8083/8083 [==============================] - 7s - loss: 3.6331 - acc: 0.3515 - val_loss: 3.6005 - val_acc: 0.3537
Epoch 4/16
8083/8083 [==============================] - 7s - loss: 3.5701 - acc: 0.3515 - val_loss: 3.5384 - val_acc: 0.3537
Epoch 5/16
8083/8083 [==============================] - 8s - loss: 3.5082 - acc: 0.3515 - val_loss: 3.4779 - val_acc: 0.3537
Epoch 6/16
8083/8083 [==============================] - 7s - loss: 3.4481 - acc: 0.3515 - val_loss: 3.4191 - val_acc: 0.3537
Epoch 7/16
8083/8083 [==============================] - 7s - loss: 3.3900 - acc: 0.3515 - val_loss: 3.3625 - val_acc: 0.3537
Epoch 8/16
8083/8083 [==============================] - 7s - loss: 3.3341 - acc: 0.3515 - val_loss: 3.3082 - val_acc: 0.3537
Epoch 9/16
8083/8083 [==============================] - 7s - loss: 3.2803 - acc: 0.3515 - val_loss: 3.2558 - val_acc: 0.3537
Epoch 10/16
8083/8083 [==============================] - 8s - loss: 3.2283 - acc: 0.3515 - val_loss: 3.2050 - val_acc: 0.3537
Epoch 11/16
8083/8083 [==============================] - 7s - loss: 3.1781 - acc: 0.3515 - val_loss: 3.1559 - val_acc: 0.3537
Epoch 12/16
8083/8083 [==============================] - 7s - loss: 3.1297 - acc: 0.3515 - val_loss: 3.1086 - val_acc: 0.3537
Epoch 13/16
8083/8083 [==============================] - 7s - loss: 3.0830 - acc: 0.3515 - val_loss: 3.0633 - val_acc: 0.3537
Epoch 14/16
8083/8083 [==============================] - 7s - loss: 3.0383 - acc: 0.3515 - val_loss: 3.0197 - val_acc: 0.3537
Epoch 15/16
8083/8083 [==============================] - 7s - loss: 2.9956 - acc: 0.3515 - val_loss: 2.9784 - val_acc: 0.3537
Epoch 16/16
7680/8083 [===========================>..] - ETA: 0s - loss: 2.9566 - acc: 0.3521_______Stopping after 120 seconds.
8083/8083 [==============================] - 8s - loss: 2.9552 - acc: 0.3515 - val_loss: 2.9390 - val_acc: 0.3537
2240/2246 [============================>.] - ETA: 0sin the else
this is the index:  17
and this is the gene:  LR                                                       0.31893
activations    [elu, tanh, hard_sigmoid, sigmoid, elu, relu, ...
batch_size                                                   128
epochs                                                        10
gene_name                           lab3000_n1e1p1b2+Gen0+gene17
layer_units    [104, 482, 283, 188, 56, 473, 457, 90, 340, 28...
loss                                    categorical_crossentropy
model_name                 lab3000_n1e1p1b2+Gen0+gene17+model.h5
nb_layers                                                     11
optimizer                                                  Nadam
Name: 0, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/10
8083/8083 [==============================] - 10s - loss: 2.1343 - acc: 0.3590 - val_loss: 2.0504 - val_acc: 0.2614
Epoch 2/10
8083/8083 [==============================] - 10s - loss: 1.9886 - acc: 0.3735 - val_loss: 1.9944 - val_acc: 0.3893
Epoch 3/10
8083/8083 [==============================] - 9s - loss: 2.0222 - acc: 0.3697 - val_loss: 2.0903 - val_acc: 0.3604
Epoch 4/10
8083/8083 [==============================] - 9s - loss: 2.0303 - acc: 0.3673 - val_loss: 2.0117 - val_acc: 0.3860
Epoch 5/10
8083/8083 [==============================] - 9s - loss: 1.9986 - acc: 0.3881 - val_loss: 1.9957 - val_acc: 0.3793
Epoch 6/10
8083/8083 [==============================] - 8s - loss: 1.9624 - acc: 0.3778 - val_loss: 2.0559 - val_acc: 0.3960
Epoch 7/10
8083/8083 [==============================] - 8s - loss: 1.9703 - acc: 0.3890 - val_loss: 1.9720 - val_acc: 0.4004
Epoch 8/10
8083/8083 [==============================] - 8s - loss: 2.0561 - acc: 0.3886 - val_loss: 2.1069 - val_acc: 0.3993
Epoch 9/10
8083/8083 [==============================] - 8s - loss: 2.3725 - acc: 0.3499 - val_loss: 2.4332 - val_acc: 0.3537
Epoch 10/10
8083/8083 [==============================] - 9s - loss: 2.4195 - acc: 0.3515 - val_loss: 2.4759 - val_acc: 0.3537
2144/2246 [===========================>..] - ETA: 0sin the else
this is the index:  18
and this is the gene:  LR                                                    0.00446407
activations    [softplus, softsign, softsign, sigmoid, sigmoi...
batch_size                                                   512
epochs                                                        19
gene_name                           lab3000_n1e1p1b2+Gen0+gene18
layer_units    [308, 456, 483, 16, 163, 106, 289, 242, 86, 20...
loss                                    categorical_crossentropy
model_name                 lab3000_n1e1p1b2+Gen0+gene18+model.h5
nb_layers                                                     11
optimizer                                                    sgd
Name: 0, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/19
8083/8083 [==============================] - 9s - loss: 3.6735 - acc: 0.0795 - val_loss: 2.9374 - val_acc: 0.3537
Epoch 2/19
8083/8083 [==============================] - 5s - loss: 2.7372 - acc: 0.3515 - val_loss: 2.5701 - val_acc: 0.3537
Epoch 3/19
8083/8083 [==============================] - 5s - loss: 2.5680 - acc: 0.3515 - val_loss: 2.5111 - val_acc: 0.3537
Epoch 4/19
8083/8083 [==============================] - 6s - loss: 2.5241 - acc: 0.3515 - val_loss: 2.4837 - val_acc: 0.3537
Epoch 5/19
8083/8083 [==============================] - 6s - loss: 2.4975 - acc: 0.3515 - val_loss: 2.4651 - val_acc: 0.3537
Epoch 6/19
8083/8083 [==============================] - 5s - loss: 2.4780 - acc: 0.3515 - val_loss: 2.4515 - val_acc: 0.3537
Epoch 7/19
8083/8083 [==============================] - 6s - loss: 2.4636 - acc: 0.3515 - val_loss: 2.4414 - val_acc: 0.3537
Epoch 8/19
8083/8083 [==============================] - 5s - loss: 2.4523 - acc: 0.3515 - val_loss: 2.4335 - val_acc: 0.3537
Epoch 9/19
8083/8083 [==============================] - 5s - loss: 2.4432 - acc: 0.3515 - val_loss: 2.4276 - val_acc: 0.3537
Epoch 10/19
8083/8083 [==============================] - 5s - loss: 2.4362 - acc: 0.3515 - val_loss: 2.4227 - val_acc: 0.3537
Epoch 11/19
8083/8083 [==============================] - 5s - loss: 2.4306 - acc: 0.3515 - val_loss: 2.4189 - val_acc: 0.3537
Epoch 12/19
8083/8083 [==============================] - 5s - loss: 2.4259 - acc: 0.3515 - val_loss: 2.4161 - val_acc: 0.3537
Epoch 13/19
8083/8083 [==============================] - 5s - loss: 2.4223 - acc: 0.3515 - val_loss: 2.4138 - val_acc: 0.3537
Epoch 14/19
8083/8083 [==============================] - 5s - loss: 2.4193 - acc: 0.3515 - val_loss: 2.4121 - val_acc: 0.3537
Epoch 15/19
8083/8083 [==============================] - 5s - loss: 2.4172 - acc: 0.3515 - val_loss: 2.4108 - val_acc: 0.3537
Epoch 16/19
8083/8083 [==============================] - 6s - loss: 2.4153 - acc: 0.3515 - val_loss: 2.4099 - val_acc: 0.3537
Epoch 17/19
8083/8083 [==============================] - 5s - loss: 2.4138 - acc: 0.3515 - val_loss: 2.4096 - val_acc: 0.3537
Epoch 18/19
8083/8083 [==============================] - 5s - loss: 2.4127 - acc: 0.3515 - val_loss: 2.4087 - val_acc: 0.3537
Epoch 19/19
8083/8083 [==============================] - 5s - loss: 2.4116 - acc: 0.3515 - val_loss: 2.4081 - val_acc: 0.3537
2176/2246 [============================>.] - ETA: 0sin the else
this is the index:  19
and this is the gene:  LR                                                      0.170069
activations    [softplus, softmax, linear, tanh, softmax, sof...
batch_size                                                    32
epochs                                                         6
gene_name                           lab3000_n1e1p1b2+Gen0+gene19
layer_units     [292, 138, 107, 35, 338, 367, 313, 308, 133, 36]
loss                                    categorical_crossentropy
model_name                 lab3000_n1e1p1b2+Gen0+gene19+model.h5
nb_layers                                                     10
optimizer                                                  Nadam
Name: 0, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/6
8083/8083 [==============================] - 39s - loss: 2.3997 - acc: 0.3812 - val_loss: 2.4533 - val_acc: 0.3537
Epoch 2/6
8083/8083 [==============================] - 38s - loss: 2.1128 - acc: 0.4876 - val_loss: 2.0783 - val_acc: 0.4894
Epoch 3/6
8083/8083 [==============================] - 38s - loss: 2.0223 - acc: 0.5153 - val_loss: 2.0292 - val_acc: 0.5161
Epoch 4/6
8064/8083 [============================>.] - ETA: 0s - loss: 2.1469 - acc: 0.4914_______Stopping after 120 seconds.
8083/8083 [==============================] - 38s - loss: 2.1463 - acc: 0.4915 - val_loss: 2.0709 - val_acc: 0.5206
2208/2246 [============================>.] - ETA: 0sin the else
this is the index:  20
and this is the gene:  LR                                                     0.0124672
activations    [hard_sigmoid, elu, elu, softmax, softplus, so...
batch_size                                                    64
epochs                                                         6
gene_name                           lab3000_n1e1p1b2+Gen0+gene20
layer_units                        [234, 304, 99, 323, 474, 201]
loss                                    categorical_crossentropy
model_name                 lab3000_n1e1p1b2+Gen0+gene20+model.h5
nb_layers                                                      6
optimizer                                                   Adam
Name: 0, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/6
8083/8083 [==============================] - 16s - loss: 2.3685 - acc: 0.4036 - val_loss: 2.0161 - val_acc: 0.5373
Epoch 2/6
8083/8083 [==============================] - 15s - loss: 1.9674 - acc: 0.5385 - val_loss: 1.9655 - val_acc: 0.5473
Epoch 3/6
8083/8083 [==============================] - 16s - loss: 1.9094 - acc: 0.5466 - val_loss: 1.9421 - val_acc: 0.5462
Epoch 4/6
8083/8083 [==============================] - 18s - loss: 1.8409 - acc: 0.5539 - val_loss: 1.8164 - val_acc: 0.5462
Epoch 5/6
8083/8083 [==============================] - 15s - loss: 1.6340 - acc: 0.5930 - val_loss: 1.7669 - val_acc: 0.5651
Epoch 6/6
8083/8083 [==============================] - 14s - loss: 1.4827 - acc: 0.6287 - val_loss: 1.6429 - val_acc: 0.6073
2240/2246 [============================>.] - ETA: 0sin the else
this is the index:  21
and this is the gene:  LR                                                    0.00928905
activations    [linear, linear, linear, hard_sigmoid, softsig...
batch_size                                                   256
epochs                                                        16
gene_name                           lab3000_n1e1p1b2+Gen0+gene21
layer_units        [130, 333, 452, 435, 469, 237, 468, 437, 266]
loss                                    categorical_crossentropy
model_name                 lab3000_n1e1p1b2+Gen0+gene21+model.h5
nb_layers                                                      9
optimizer                                               Adadelta
Name: 0, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/16
8083/8083 [==============================] - 9s - loss: 2.6358 - acc: 0.3136 - val_loss: 2.4286 - val_acc: 0.3537
Epoch 2/16
8083/8083 [==============================] - 8s - loss: 2.4167 - acc: 0.3460 - val_loss: 2.4227 - val_acc: 0.3537
Epoch 3/16
8083/8083 [==============================] - 8s - loss: 2.4095 - acc: 0.3516 - val_loss: 2.4158 - val_acc: 0.3537
Epoch 4/16
8083/8083 [==============================] - 7s - loss: 2.4102 - acc: 0.3453 - val_loss: 2.4159 - val_acc: 0.3537
Epoch 5/16
8083/8083 [==============================] - 7s - loss: 2.3252 - acc: 0.3767 - val_loss: 2.0783 - val_acc: 0.4917
Epoch 6/16
8083/8083 [==============================] - 7s - loss: 1.9918 - acc: 0.5012 - val_loss: 2.0823 - val_acc: 0.4650
Epoch 7/16
8083/8083 [==============================] - 7s - loss: 1.9362 - acc: 0.5103 - val_loss: 1.7691 - val_acc: 0.5462
Epoch 8/16
8083/8083 [==============================] - 7s - loss: 1.8613 - acc: 0.5211 - val_loss: 1.7102 - val_acc: 0.5684
Epoch 9/16
8083/8083 [==============================] - 8s - loss: 1.6975 - acc: 0.5640 - val_loss: 2.0270 - val_acc: 0.4772
Epoch 10/16
8083/8083 [==============================] - 7s - loss: 1.6776 - acc: 0.5670 - val_loss: 1.7424 - val_acc: 0.5673
Epoch 11/16
8083/8083 [==============================] - 7s - loss: 1.6513 - acc: 0.5710 - val_loss: 1.7061 - val_acc: 0.5684
Epoch 12/16
8083/8083 [==============================] - 7s - loss: 1.6249 - acc: 0.5827 - val_loss: 1.6543 - val_acc: 0.5740
Epoch 13/16
8083/8083 [==============================] - 7s - loss: 1.5854 - acc: 0.5899 - val_loss: 1.6496 - val_acc: 0.5640
Epoch 14/16
8083/8083 [==============================] - 7s - loss: 1.5783 - acc: 0.5951 - val_loss: 1.6329 - val_acc: 0.5795
Epoch 15/16
8083/8083 [==============================] - 7s - loss: 1.5285 - acc: 0.6094 - val_loss: 1.6685 - val_acc: 0.5717
Epoch 16/16
7936/8083 [============================>.] - ETA: 0s - loss: 1.5528 - acc: 0.5988_______Stopping after 120 seconds.
8083/8083 [==============================] - 7s - loss: 1.5447 - acc: 0.6008 - val_loss: 1.5918 - val_acc: 0.5973
2176/2246 [============================>.] - ETA: 0sin the else
this is the index:  22
and this is the gene:  LR                                                      0.297231
activations    [linear, linear, linear, softmax, linear, soft...
batch_size                                                   128
epochs                                                         4
gene_name                           lab3000_n1e1p1b2+Gen0+gene22
layer_units                     [244, 29, 155, 505, 28, 328, 75]
loss                                    categorical_crossentropy
model_name                 lab3000_n1e1p1b2+Gen0+gene22+model.h5
nb_layers                                                      7
optimizer                                                RMSProp
Name: 0, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/4
8083/8083 [==============================] - 11s - loss: 2.4221 - acc: 0.3650 - val_loss: 1.8015 - val_acc: 0.5651
Epoch 2/4
8083/8083 [==============================] - 8s - loss: 1.6904 - acc: 0.5841 - val_loss: 1.6896 - val_acc: 0.5729
Epoch 3/4
8083/8083 [==============================] - 8s - loss: 1.5416 - acc: 0.6209 - val_loss: 1.5838 - val_acc: 0.6140
Epoch 4/4
8083/8083 [==============================] - 7s - loss: 1.4220 - acc: 0.6442 - val_loss: 1.5171 - val_acc: 0.6151
2176/2246 [============================>.] - ETA: 0sin the else
this is the index:  23
and this is the gene:  LR                                          0.281495
activations            [sigmoid, softplus, softplus]
batch_size                                         8
epochs                                             8
gene_name               lab3000_n1e1p1b2+Gen0+gene23
layer_units                          [245, 282, 171]
loss                        categorical_crossentropy
model_name     lab3000_n1e1p1b2+Gen0+gene23+model.h5
nb_layers                                          3
optimizer                                     Adamax
Name: 0, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/8
8083/8083 [==============================] - 65s - loss: 1.6452 - acc: 0.6107 - val_loss: 1.3107 - val_acc: 0.6952
Epoch 2/8
8080/8083 [============================>.] - ETA: 0s - loss: 1.1295 - acc: 0.7329_______Stopping after 120 seconds.
8083/8083 [==============================] - 62s - loss: 1.1297 - acc: 0.7329 - val_loss: 1.1768 - val_acc: 0.7141
2176/2246 [============================>.] - ETA: 0sin the else
this is the index:  24
and this is the gene:  LR                                          0.354097
activations            [softplus, hard_sigmoid, elu]
batch_size                                         8
epochs                                             9
gene_name               lab3000_n1e1p1b2+Gen0+gene24
layer_units                           [416, 89, 497]
loss                        categorical_crossentropy
model_name     lab3000_n1e1p1b2+Gen0+gene24+model.h5
nb_layers                                          3
optimizer                                     Adamax
Name: 0, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/9
8083/8083 [==============================] - 98s - loss: 1.4872 - acc: 0.6463 - val_loss: 1.1333 - val_acc: 0.7442
Epoch 2/9
8080/8083 [============================>.] - ETA: 0s - loss: 0.9198 - acc: 0.7814_______Stopping after 120 seconds.
8083/8083 [==============================] - 96s - loss: 0.9196 - acc: 0.7814 - val_loss: 0.9701 - val_acc: 0.7642
2176/2246 [============================>.] - ETA: 0sin the else
this is the index:  25
and this is the gene:  LR                                             0.252698
activations    [softsign, relu, softmax, softsign, elu]
batch_size                                            8
epochs                                                9
gene_name                  lab3000_n1e1p1b2+Gen0+gene25
layer_units                    [96, 345, 345, 198, 276]
loss                           categorical_crossentropy
model_name        lab3000_n1e1p1b2+Gen0+gene25+model.h5
nb_layers                                             5
optimizer                                          Adam
Name: 0, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/9
8083/8083 [==============================] - 46s - loss: 1.6483 - acc: 0.5765 - val_loss: 1.3847 - val_acc: 0.6507
Epoch 2/9
8083/8083 [==============================] - 44s - loss: 1.1133 - acc: 0.7214 - val_loss: 1.1191 - val_acc: 0.7319
Epoch 3/9
8080/8083 [============================>.] - ETA: 0s - loss: 0.8192 - acc: 0.7965_______Stopping after 120 seconds.
8083/8083 [==============================] - 50s - loss: 0.8203 - acc: 0.7964 - val_loss: 1.0447 - val_acc: 0.7575
2208/2246 [============================>.] - ETA: 0sin the else
this is the index:  26
and this is the gene:  LR                                                     0.0341792
activations    [elu, elu, softplus, hard_sigmoid, softmax, li...
batch_size                                                    32
epochs                                                         2
gene_name                           lab3000_n1e1p1b2+Gen0+gene26
layer_units    [245, 331, 431, 115, 97, 168, 235, 255, 247, 429]
loss                                    categorical_crossentropy
model_name                 lab3000_n1e1p1b2+Gen0+gene26+model.h5
nb_layers                                                     10
optimizer                                               Adadelta
Name: 0, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/2
8083/8083 [==============================] - 44s - loss: 2.4550 - acc: 0.3443 - val_loss: 2.4259 - val_acc: 0.3537
Epoch 2/2
8083/8083 [==============================] - 40s - loss: 2.4187 - acc: 0.3496 - val_loss: 2.4224 - val_acc: 0.3537
2208/2246 [============================>.] - ETA: 0sin the else
this is the index:  27
and this is the gene:  LR                                                     0.0061892
activations    [hard_sigmoid, softplus, softsign, relu, hard_...
batch_size                                                    32
epochs                                                         2
gene_name                           lab3000_n1e1p1b2+Gen0+gene27
layer_units                        [182, 150, 56, 501, 278, 406]
loss                                    categorical_crossentropy
model_name                 lab3000_n1e1p1b2+Gen0+gene27+model.h5
nb_layers                                                      6
optimizer                                                  Nadam
Name: 0, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/2
8083/8083 [==============================] - 29s - loss: 1.9906 - acc: 0.4935 - val_loss: 1.7335 - val_acc: 0.5784
Epoch 2/2
8083/8083 [==============================] - 25s - loss: 1.5154 - acc: 0.6045 - val_loss: 1.3800 - val_acc: 0.6429
2240/2246 [============================>.] - ETA: 0sin the else
this is the index:  28
and this is the gene:  LR                                                0.394899
activations    [softplus, softmax, hard_sigmoid, softplus]
batch_size                                             512
epochs                                                  17
gene_name                     lab3000_n1e1p1b2+Gen0+gene28
layer_units                            [462, 81, 243, 499]
loss                              categorical_crossentropy
model_name           lab3000_n1e1p1b2+Gen0+gene28+model.h5
nb_layers                                                4
optimizer                                             Adam
Name: 0, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/17
8083/8083 [==============================] - 15s - loss: 2.6706 - acc: 0.3202 - val_loss: 2.4899 - val_acc: 0.3537
Epoch 2/17
8083/8083 [==============================] - 10s - loss: 2.4274 - acc: 0.3515 - val_loss: 2.4046 - val_acc: 0.3537
Epoch 3/17
8083/8083 [==============================] - 11s - loss: 2.3718 - acc: 0.3515 - val_loss: 2.3463 - val_acc: 0.3537
Epoch 4/17
8083/8083 [==============================] - 13s - loss: 2.3219 - acc: 0.3772 - val_loss: 2.2863 - val_acc: 0.3537
Epoch 5/17
8083/8083 [==============================] - 13s - loss: 2.2350 - acc: 0.4440 - val_loss: 2.2014 - val_acc: 0.3537
Epoch 6/17
8083/8083 [==============================] - 11s - loss: 2.1312 - acc: 0.5253 - val_loss: 2.0915 - val_acc: 0.5417
Epoch 7/17
8083/8083 [==============================] - 10s - loss: 2.0159 - acc: 0.5533 - val_loss: 1.9858 - val_acc: 0.5451
Epoch 8/17
8083/8083 [==============================] - 11s - loss: 1.9355 - acc: 0.5550 - val_loss: 1.9594 - val_acc: 0.5451
Epoch 9/17
8083/8083 [==============================] - 11s - loss: 1.8941 - acc: 0.5562 - val_loss: 1.9336 - val_acc: 0.5451
Epoch 10/17
7680/8083 [===========================>..] - ETA: 0s - loss: 1.8801 - acc: 0.5577_______Stopping after 120 seconds.
8083/8083 [==============================] - 10s - loss: 1.8805 - acc: 0.5564 - val_loss: 1.9515 - val_acc: 0.5406
2240/2246 [============================>.] - ETA: 0sin the else
this is the index:  29
and this is the gene:  LR                                                   0.334299
activations    [sigmoid, softmax, softmax, sigmoid, elu, elu]
batch_size                                                 32
epochs                                                      8
gene_name                        lab3000_n1e1p1b2+Gen0+gene29
layer_units                    [206, 375, 283, 394, 415, 271]
loss                                 categorical_crossentropy
model_name              lab3000_n1e1p1b2+Gen0+gene29+model.h5
nb_layers                                                   6
optimizer                                                 sgd
Name: 0, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/8
8083/8083 [==============================] - 21s - loss: 2.4583 - acc: 0.3434 - val_loss: 2.4188 - val_acc: 0.3537
Epoch 2/8
8083/8083 [==============================] - 15s - loss: 2.4273 - acc: 0.3387 - val_loss: 2.4137 - val_acc: 0.3537
Epoch 3/8
8083/8083 [==============================] - 18s - loss: 2.4222 - acc: 0.3437 - val_loss: 2.4279 - val_acc: 0.3537
Epoch 4/8
8083/8083 [==============================] - 17s - loss: 2.4201 - acc: 0.3450 - val_loss: 2.4142 - val_acc: 0.3537
Epoch 5/8
8083/8083 [==============================] - 16s - loss: 2.4211 - acc: 0.3444 - val_loss: 2.4239 - val_acc: 0.3537
Epoch 6/8
8083/8083 [==============================] - 17s - loss: 2.4232 - acc: 0.3463 - val_loss: 2.4401 - val_acc: 0.3537
Epoch 7/8
8064/8083 [============================>.] - ETA: 0s - loss: 2.4179 - acc: 0.3454_______Stopping after 120 seconds.
8083/8083 [==============================] - 17s - loss: 2.4180 - acc: 0.3455 - val_loss: 2.4190 - val_acc: 0.3537
2176/2246 [============================>.] - ETA: 0sin the else

^^^verbose output of n1e1p1b1_clade.grow_models()

  • grow_models() trains the models and generates pickled 'growth analyses' dataframes, one for each model trained, which include train and validation loss and accuracy for each batch and epoch, as well as the time take to run each batch and epoch
  • grow_models() also pickles, and saves as a property, a phenotypes dataframe, which summarizes the performance of each model
    • the misclassed dictionaries store the true and labeled classes for each mislabeled datapoint
  • grow_models() also saves each trained model as a .h5 file

In [7]:
n1e1p1b2_clade.phenotypes


Out[7]:
gene_name misclassed test_accuracy test_loss time train_accuracy train_loss
0 lab3000_n1e1p1b2+Gen0+gene0 {'true_class': [10, 1, 4, 4, 5, 4, 1, 11, 23, ... 0.421193 1.921113 122.650144 0.449462 1.708227
0 lab3000_n1e1p1b2+Gen0+gene1 {'true_class': [10, 1, 4, 4, 5, 4, 1, 1, 11, 2... 0.361977 2.427144 126.230092 0.351478 2.412989
0 lab3000_n1e1p1b2+Gen0+gene2 {'true_class': [10, 4, 4, 3, 5, 23, 8, 20, 1, ... 0.722173 1.754980 64.744479 0.954349 0.213664
0 lab3000_n1e1p1b2+Gen0+gene3 {'true_class': [10, 1, 5, 1, 1, 11, 23, 19, 8,... 0.545414 1.920586 54.632695 0.551033 1.875691
0 lab3000_n1e1p1b2+Gen0+gene4 {'true_class': [10, 1, 4, 4, 5, 4, 1, 1, 11, 2... 0.361977 2.453830 35.217261 0.351478 2.447145
0 lab3000_n1e1p1b2+Gen0+gene5 {'true_class': [10, 1, 4, 4, 5, 4, 1, 1, 11, 2... 0.361977 2.589548 156.549994 0.351478 2.583639
0 lab3000_n1e1p1b2+Gen0+gene6 {'true_class': [4, 5, 23, 20, 1, 40, 15, 1, 21... 0.780944 1.239399 31.594541 0.962266 0.149377
0 lab3000_n1e1p1b2+Gen0+gene7 {'true_class': [3, 10, 1, 3, 3, 3, 3, 3, 5, 1,... 0.211042 2.452458 133.506259 0.216751 2.435554
0 lab3000_n1e1p1b2+Gen0+gene8 {'true_class': [10, 1, 4, 4, 5, 4, 1, 1, 11, 2... 0.361977 2.422574 147.820026 0.351478 2.408828
0 lab3000_n1e1p1b2+Gen0+gene9 {'true_class': [10, 1, 4, 4, 5, 4, 1, 1, 11, 2... 0.361977 2.420465 118.986796 0.351478 2.406220
0 lab3000_n1e1p1b2+Gen0+gene10 {'true_class': [10, 4, 3, 5, 23, 8, 9, 6, 10, ... 0.626002 1.637140 113.158686 0.745268 0.925260
0 lab3000_n1e1p1b2+Gen0+gene11 {'true_class': [10, 4, 4, 5, 23, 8, 6, 20, 1, ... 0.723063 1.521470 26.861886 0.932327 0.261401
0 lab3000_n1e1p1b2+Gen0+gene12 {'true_class': [10, 1, 4, 5, 1, 1, 23, 8, 9, 6... 0.638914 1.407381 50.740100 0.695163 1.101717
0 lab3000_n1e1p1b2+Gen0+gene13 {'true_class': [4, 4, 5, 23, 20, 1, 40, 15, 1,... 0.803651 0.883051 47.459044 0.965607 0.120601
0 lab3000_n1e1p1b2+Gen0+gene14 {'true_class': [10, 1, 4, 5, 1, 1, 11, 23, 8, ... 0.589938 1.617656 124.633040 0.604602 1.546149
0 lab3000_n1e1p1b2+Gen0+gene15 {'true_class': [10, 1, 4, 4, 5, 4, 1, 1, 11, 2... 0.361977 2.414036 130.925534 0.351478 2.401978
0 lab3000_n1e1p1b2+Gen0+gene16 {'true_class': [10, 1, 4, 4, 5, 4, 1, 1, 11, 2... 0.361977 2.941463 127.376373 0.351478 2.933976
0 lab3000_n1e1p1b2+Gen0+gene17 {'true_class': [10, 1, 4, 4, 5, 4, 1, 1, 11, 2... 0.361977 2.495039 93.818096 0.351478 2.475288
0 lab3000_n1e1p1b2+Gen0+gene18 {'true_class': [10, 1, 4, 4, 5, 4, 1, 1, 11, 2... 0.361977 2.422885 115.749587 0.351478 2.410771
0 lab3000_n1e1p1b2+Gen0+gene19 {'true_class': [10, 1, 3, 5, 1, 1, 11, 23, 19,... 0.525378 2.063859 154.142115 0.530249 2.038407
0 lab3000_n1e1p1b2+Gen0+gene20 {'true_class': [10, 1, 4, 5, 1, 1, 11, 23, 8, ... 0.605076 1.672505 97.117181 0.646790 1.401081
0 lab3000_n1e1p1b2+Gen0+gene21 {'true_class': [10, 1, 4, 5, 1, 1, 11, 23, 8, ... 0.596171 1.630955 123.401309 0.628727 1.460353
0 lab3000_n1e1p1b2+Gen0+gene22 {'true_class': [10, 1, 4, 5, 1, 1, 11, 23, 8, ... 0.618433 1.540090 35.467959 0.650377 1.354569
0 lab3000_n1e1p1b2+Gen0+gene23 {'true_class': [4, 5, 23, 8, 9, 6, 10, 20, 1, ... 0.712378 1.204043 127.953699 0.777063 0.941307
0 lab3000_n1e1p1b2+Gen0+gene24 {'true_class': [4, 4, 5, 23, 10, 20, 1, 40, 15... 0.752449 1.030251 194.952801 0.827910 0.682031
0 lab3000_n1e1p1b2+Gen0+gene25 {'true_class': [4, 4, 5, 23, 8, 3, 6, 10, 20, ... 0.743544 1.087753 141.736290 0.838550 0.620869
0 lab3000_n1e1p1b2+Gen0+gene26 {'true_class': [10, 1, 4, 4, 5, 4, 1, 1, 11, 2... 0.361977 2.425202 85.081392 0.351478 2.409010
0 lab3000_n1e1p1b2+Gen0+gene27 {'true_class': [10, 1, 4, 5, 11, 23, 8, 3, 9, ... 0.643366 1.408406 55.569928 0.672523 1.237195
0 lab3000_n1e1p1b2+Gen0+gene28 {'true_class': [10, 1, 5, 1, 1, 11, 23, 19, 8,... 0.540071 1.946962 121.436508 0.556105 1.867724
0 lab3000_n1e1p1b2+Gen0+gene29 {'true_class': [10, 1, 4, 4, 5, 4, 1, 1, 11, 2... 0.361977 2.418423 124.918322 0.351478 2.407060
  • select_parents() selects, by default, the top 20% of models by test accuracy, plut 10% random models; or if the population size is small, such as in this demo case, at least two parent models are selected

In [8]:
n1e1p1b2_clade.select_parents()

In [9]:
n1e1p1b2_clade.parent_genes


Out[9]:
LR activations batch_size epochs gene_name layer_units loss model_name nb_layers optimizer
0 0.053918 [softplus, hard_sigmoid, softplus] 32 19 lab3000_n1e1p1b2+Gen0+gene2 [14, 392, 25] categorical_crossentropy lab3000_n1e1p1b2+Gen0+gene2+model.h5 3 RMSProp
0 0.002698 [linear, softplus, relu] 512 9 lab3000_n1e1p1b2+Gen0+gene6 [139, 158, 491] categorical_crossentropy lab3000_n1e1p1b2+Gen0+gene6+model.h5 3 Adam
0 0.013870 [linear, hard_sigmoid] 128 16 lab3000_n1e1p1b2+Gen0+gene11 [4, 204] categorical_crossentropy lab3000_n1e1p1b2+Gen0+gene11+model.h5 2 Nadam
0 0.002635 [softsign] 128 5 lab3000_n1e1p1b2+Gen0+gene13 [287] categorical_crossentropy lab3000_n1e1p1b2+Gen0+gene13+model.h5 1 Adam
0 0.354097 [softplus, hard_sigmoid, elu] 8 9 lab3000_n1e1p1b2+Gen0+gene24 [416, 89, 497] categorical_crossentropy lab3000_n1e1p1b2+Gen0+gene24+model.h5 3 Adamax
0 0.252698 [softsign, relu, softmax, softsign, elu] 8 9 lab3000_n1e1p1b2+Gen0+gene25 [96, 345, 345, 198, 276] categorical_crossentropy lab3000_n1e1p1b2+Gen0+gene25+model.h5 5 Adam
0 0.091625 [relu, sigmoid, elu, sigmoid, hard_sigmoid, ta... 512 16 lab3000_n1e1p1b2+Gen0+gene0 [494, 283, 25, 33, 308, 95, 59, 186, 500] categorical_crossentropy lab3000_n1e1p1b2+Gen0+gene0+model.h5 9 RMSProp
0 0.053448 [tanh, hard_sigmoid, sigmoid, softsign, linear... 8 5 lab3000_n1e1p1b2+Gen0+gene5 [149, 159, 2, 125, 155, 351, 99, 384, 351, 263] categorical_crossentropy lab3000_n1e1p1b2+Gen0+gene5+model.h5 10 Adagrad
0 0.119733 [tanh, softsign, softsign, softmax, sigmoid, r... 8 5 lab3000_n1e1p1b2+Gen0+gene8 [252, 481, 165, 512, 323, 85, 25, 415, 351, 123] categorical_crossentropy lab3000_n1e1p1b2+Gen0+gene8+model.h5 10 sgd
  • breed() generates a new population of genes, encoding a new generation of models; note that current_generation is incremented when clade.breed() is run

In [10]:
n1e1p1b2_clade.breed()

Generation1


In [12]:
n1e1p1b2_clade.current_generation


Out[12]:
1

In [13]:
n1e1p1b2_clade.genotypes


Out[13]:
LR activations batch_size epochs gene_name layer_units model_name nb_layers optimizer
0 0.091625 [relu, sigmoid, elu, sigmoid, hard_sigmoid, ta... 512 16 lab3000_n1e1p1b2+Gen1+gene0 [96, 345, 345, 198, 276, 2, 2, 2, 2] lab3000_n1e1p1b2+Gen1+gene0+model.h5 9 Adam
1 0.252698 [softsign, softmax, elu] 512 9 lab3000_n1e1p1b2+Gen1+gene1 [139, 158, 491] lab3000_n1e1p1b2+Gen1+gene1+model.h5 3 Adam
2 0.091625 [softplus, hard_sigmoid, elu] 8 9 lab3000_n1e1p1b2+Gen1+gene2 [416, 89, 497] lab3000_n1e1p1b2+Gen1+gene2+model.h5 3 Adamax
3 0.252698 [softsign, relu, softmax, softsign, elu, elu, ... 8 5 lab3000_n1e1p1b2+Gen1+gene3 [252, 481, 165, 512, 323, 85, 25, 415, 351, 123] lab3000_n1e1p1b2+Gen1+gene3+model.h5 10 sgd
4 0.053918 [softplus, hard_sigmoid, softplus] 32 19 lab3000_n1e1p1b2+Gen1+gene4 [14, 392, 25] lab3000_n1e1p1b2+Gen1+gene4+model.h5 3 Nadam
5 0.119733 [softsign, relu, softmax, softsign, elu, relu,... 8 5 lab3000_n1e1p1b2+Gen1+gene5 [252, 481, 165, 512, 323, 85, 25, 415, 351, 123] lab3000_n1e1p1b2+Gen1+gene5+model.h5 10 sgd
6 0.002635 [tanh, hard_sigmoid, sigmoid, softsign, linear... 128 5 lab3000_n1e1p1b2+Gen1+gene6 [149, 159, 2, 125, 155, 351, 99, 384, 351, 263] lab3000_n1e1p1b2+Gen1+gene6+model.h5 10 Adagrad
7 0.354097 [softplus, hard_sigmoid, elu, elu, elu, elu, e... 8 9 lab3000_n1e1p1b2+Gen1+gene7 [416, 89, 497, 2, 2, 2, 2, 2, 2, 2] lab3000_n1e1p1b2+Gen1+gene7+model.h5 10 Adagrad
8 0.002635 [softsign] 8 5 lab3000_n1e1p1b2+Gen1+gene8 [384] lab3000_n1e1p1b2+Gen1+gene8+model.h5 1 Adam
9 0.053918 [relu, sigmoid, elu, sigmoid, hard_sigmoid, ta... 32 16 lab3000_n1e1p1b2+Gen1+gene9 [14, 392, 25, 2, 2, 2, 2, 2, 2] lab3000_n1e1p1b2+Gen1+gene9+model.h5 9 RMSProp
10 0.013870 [softplus, hard_sigmoid, elu] 128 16 lab3000_n1e1p1b2+Gen1+gene10 [416, 89, 497] lab3000_n1e1p1b2+Gen1+gene10+model.h5 3 Adamax
11 0.002698 [softplus, hard_sigmoid, elu] 512 9 lab3000_n1e1p1b2+Gen1+gene11 [416, 89, 497] lab3000_n1e1p1b2+Gen1+gene11+model.h5 3 sgd
12 0.013870 [linear, hard_sigmoid, hard_sigmoid, hard_sigm... 128 16 lab3000_n1e1p1b2+Gen1+gene12 [149, 159, 2, 125, 155, 351, 99, 384, 351, 263] lab3000_n1e1p1b2+Gen1+gene12+model.h5 10 Adagrad
13 0.053448 [softplus, hard_sigmoid, softplus, softplus, s... 256 5 lab3000_n1e1p1b2+Gen1+gene13 [14, 392, 25, 2, 2, 2, 2, 2, 2, 2] lab3000_n1e1p1b2+Gen1+gene13+model.h5 10 Adagrad
14 0.252698 [sigmoid, sigmoid, hard_sigmoid, relu, softplus] 512 16 lab3000_n1e1p1b2+Gen1+gene14 [494, 283, 95, 59, 186] lab3000_n1e1p1b2+Gen1+gene14+model.h5 5 RMSProp
15 0.002635 [softsign] 8 5 lab3000_n1e1p1b2+Gen1+gene15 [99] lab3000_n1e1p1b2+Gen1+gene15+model.h5 1 Adam
16 0.252698 [tanh, softsign, softsign, softmax, sigmoid, r... 8 5 lab3000_n1e1p1b2+Gen1+gene16 [252, 481, 165, 512, 323, 85, 25, 415, 351, 123] lab3000_n1e1p1b2+Gen1+gene16+model.h5 10 sgd
17 0.252698 [softmax, softsign, elu] 512 9 lab3000_n1e1p1b2+Gen1+gene17 [139, 158, 491] lab3000_n1e1p1b2+Gen1+gene17+model.h5 3 Adam
18 0.011777 [tanh, softsign, softsign, softmax, sigmoid, r... 512 5 lab3000_n1e1p1b2+Gen1+gene18 [252, 481, 512, 323, 85, 25, 415, 351, 123] lab3000_n1e1p1b2+Gen1+gene18+model.h5 9 RMSProp
19 0.002635 [softsign, softsign, softsign] 32 5 lab3000_n1e1p1b2+Gen1+gene19 [287, 2, 2] lab3000_n1e1p1b2+Gen1+gene19+model.h5 3 RMSProp
20 0.013870 [softplus, hard_sigmoid, elu] 128 16 lab3000_n1e1p1b2+Gen1+gene20 [416, 89, 497] lab3000_n1e1p1b2+Gen1+gene20+model.h5 3 Adamax
21 0.013870 [linear, hard_sigmoid, hard_sigmoid] 128 16 lab3000_n1e1p1b2+Gen1+gene21 [14, 392, 25] lab3000_n1e1p1b2+Gen1+gene21+model.h5 3 Nadam
22 0.252698 [tanh, softsign, softsign, softmax, sigmoid, r... 8 9 lab3000_n1e1p1b2+Gen1+gene22 [252, 481, 165, 512, 323, 85, 25, 415, 351, 123] lab3000_n1e1p1b2+Gen1+gene22+model.h5 10 sgd
23 0.002682 [tanh, hard_sigmoid, sigmoid, softsign, linear... 8 5 lab3000_n1e1p1b2+Gen1+gene23 [252, 481, 165, 512, 323, 85, 25, 415, 351, 123] lab3000_n1e1p1b2+Gen1+gene23+model.h5 10 sgd
24 0.252698 [linear, softplus, relu, relu, softplus] 512 9 lab3000_n1e1p1b2+Gen1+gene24 [96, 345, 345, 198, 276] lab3000_n1e1p1b2+Gen1+gene24+model.h5 5 Adam
25 0.013870 [linear, hard_sigmoid] 8 5 lab3000_n1e1p1b2+Gen1+gene25 [4, 204] lab3000_n1e1p1b2+Gen1+gene25+model.h5 2 Nadam
26 0.002635 [softsign, relu, softmax, softsign, elu] 8 5 lab3000_n1e1p1b2+Gen1+gene26 [96, 345, 345, 198, 276] lab3000_n1e1p1b2+Gen1+gene26+model.h5 5 Adam
27 0.053918 [softplus, hard_sigmoid, softplus] 32 19 lab3000_n1e1p1b2+Gen1+gene27 [345, 345, 276] lab3000_n1e1p1b2+Gen1+gene27+model.h5 3 RMSProp
28 0.091625 [relu, sigmoid, elu, sigmoid, hard_sigmoid, ta... 8 4 lab3000_n1e1p1b2+Gen1+gene28 [252, 481, 165, 512, 85, 25, 415, 351, 123] lab3000_n1e1p1b2+Gen1+gene28+model.h5 9 sgd
29 0.002635 [softplus] 128 5 lab3000_n1e1p1b2+Gen1+gene29 [287] lab3000_n1e1p1b2+Gen1+gene29+model.h5 1 Adam

In [14]:
n1e1p1b2_clade.seed_models()

In [15]:
n1e1p1b2_clade.grow_models()


this is the index:  0
and this is the gene:  LR                                                     0.0916252
activations    [relu, sigmoid, elu, sigmoid, hard_sigmoid, ta...
batch_size                                                   512
epochs                                                        16
gene_name                            lab3000_n1e1p1b2+Gen1+gene0
layer_units                 [96, 345, 345, 198, 276, 2, 2, 2, 2]
model_name                  lab3000_n1e1p1b2+Gen1+gene0+model.h5
nb_layers                                                      9
optimizer                                                   Adam
Name: 0, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/16
8083/8083 [==============================] - 9s - loss: 3.7528 - acc: 0.0049 - val_loss: 3.7210 - val_acc: 0.0089
Epoch 2/16
8083/8083 [==============================] - 6s - loss: 3.6889 - acc: 0.0049 - val_loss: 3.6560 - val_acc: 0.0089
Epoch 3/16
8083/8083 [==============================] - 4s - loss: 3.6211 - acc: 0.0049 - val_loss: 3.5864 - val_acc: 0.0089
Epoch 4/16
8083/8083 [==============================] - 3s - loss: 3.5485 - acc: 0.0238 - val_loss: 3.5107 - val_acc: 0.3537
Epoch 5/16
8083/8083 [==============================] - 3s - loss: 3.4687 - acc: 0.3515 - val_loss: 3.4281 - val_acc: 0.3537
Epoch 6/16
8083/8083 [==============================] - 3s - loss: 3.3817 - acc: 0.3515 - val_loss: 3.3379 - val_acc: 0.3537
Epoch 7/16
8083/8083 [==============================] - 3s - loss: 3.2870 - acc: 0.3515 - val_loss: 3.2401 - val_acc: 0.3537
Epoch 8/16
8083/8083 [==============================] - 3s - loss: 3.1853 - acc: 0.3515 - val_loss: 3.1350 - val_acc: 0.3537
Epoch 9/16
8083/8083 [==============================] - 3s - loss: 3.0766 - acc: 0.3515 - val_loss: 3.0254 - val_acc: 0.3537
Epoch 10/16
8083/8083 [==============================] - 3s - loss: 2.9649 - acc: 0.3515 - val_loss: 2.9130 - val_acc: 0.3537
Epoch 11/16
8083/8083 [==============================] - 3s - loss: 2.8530 - acc: 0.3515 - val_loss: 2.8026 - val_acc: 0.3537
Epoch 12/16
8083/8083 [==============================] - 3s - loss: 2.7466 - acc: 0.3515 - val_loss: 2.7012 - val_acc: 0.3537
Epoch 13/16
8083/8083 [==============================] - 3s - loss: 2.6528 - acc: 0.3515 - val_loss: 2.6158 - val_acc: 0.3537
Epoch 14/16
8083/8083 [==============================] - 3s - loss: 2.5781 - acc: 0.3515 - val_loss: 2.5513 - val_acc: 0.3537
Epoch 15/16
8083/8083 [==============================] - 3s - loss: 2.5241 - acc: 0.3515 - val_loss: 2.5071 - val_acc: 0.3537
Epoch 16/16
8083/8083 [==============================] - 3s - loss: 2.4887 - acc: 0.3515 - val_loss: 2.4784 - val_acc: 0.3537
2112/2246 [===========================>..] - ETA: 0sthis is the index:  1
and this is the gene:  LR                                         0.252698
activations                [softsign, softmax, elu]
batch_size                                      512
epochs                                            9
gene_name               lab3000_n1e1p1b2+Gen1+gene1
layer_units                         [139, 158, 491]
model_name     lab3000_n1e1p1b2+Gen1+gene1+model.h5
nb_layers                                         3
optimizer                                      Adam
Name: 1, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/9
8083/8083 [==============================] - 6s - loss: 3.6146 - acc: 0.3272 - val_loss: 3.2724 - val_acc: 0.3537
Epoch 2/9
8083/8083 [==============================] - 3s - loss: 2.8706 - acc: 0.3515 - val_loss: 2.4954 - val_acc: 0.3537
Epoch 3/9
8083/8083 [==============================] - 3s - loss: 2.3513 - acc: 0.3541 - val_loss: 2.2272 - val_acc: 0.4327
Epoch 4/9
8083/8083 [==============================] - 3s - loss: 2.0822 - acc: 0.5113 - val_loss: 1.9510 - val_acc: 0.5261
Epoch 5/9
8083/8083 [==============================] - 3s - loss: 1.8026 - acc: 0.5465 - val_loss: 1.6838 - val_acc: 0.5873
Epoch 6/9
8083/8083 [==============================] - 3s - loss: 1.5483 - acc: 0.6048 - val_loss: 1.4949 - val_acc: 0.6196
Epoch 7/9
8083/8083 [==============================] - 3s - loss: 1.3403 - acc: 0.6402 - val_loss: 1.3610 - val_acc: 0.6352
Epoch 8/9
8083/8083 [==============================] - 3s - loss: 1.1772 - acc: 0.6736 - val_loss: 1.2860 - val_acc: 0.6785
Epoch 9/9
8083/8083 [==============================] - 3s - loss: 1.0768 - acc: 0.7064 - val_loss: 1.2596 - val_acc: 0.6763
2112/2246 [===========================>..] - ETA: 0sin the else
this is the index:  2
and this is the gene:  LR                                        0.0916252
activations           [softplus, hard_sigmoid, elu]
batch_size                                        8
epochs                                            9
gene_name               lab3000_n1e1p1b2+Gen1+gene2
layer_units                          [416, 89, 497]
model_name     lab3000_n1e1p1b2+Gen1+gene2+model.h5
nb_layers                                         3
optimizer                                    Adamax
Name: 2, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/9
8083/8083 [==============================] - 89s - loss: 1.4737 - acc: 0.6454 - val_loss: 1.1576 - val_acc: 0.7208
Epoch 2/9
8080/8083 [============================>.] - ETA: 0s - loss: 0.9238 - acc: 0.7792_______Stopping after 120 seconds.
8083/8083 [==============================] - 87s - loss: 0.9236 - acc: 0.7793 - val_loss: 1.0282 - val_acc: 0.7608
2176/2246 [============================>.] - ETA: 0sin the else
this is the index:  3
and this is the gene:  LR                                                      0.252698
activations    [softsign, relu, softmax, softsign, elu, elu, ...
batch_size                                                     8
epochs                                                         5
gene_name                            lab3000_n1e1p1b2+Gen1+gene3
layer_units     [252, 481, 165, 512, 323, 85, 25, 415, 351, 123]
model_name                  lab3000_n1e1p1b2+Gen1+gene3+model.h5
nb_layers                                                     10
optimizer                                                    sgd
Name: 3, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/5
8083/8083 [==============================] - 49s - loss: 2.5628 - acc: 0.3502 - val_loss: 2.4197 - val_acc: 0.3537
Epoch 2/5
8083/8083 [==============================] - 46s - loss: 2.4137 - acc: 0.3500 - val_loss: 2.4117 - val_acc: 0.3537
Epoch 3/5
8080/8083 [============================>.] - ETA: 0s - loss: 2.4101 - acc: 0.3511_______Stopping after 120 seconds.
8083/8083 [==============================] - 44s - loss: 2.4108 - acc: 0.3510 - val_loss: 2.4213 - val_acc: 0.3537
2208/2246 [============================>.] - ETA: 0sin the else
this is the index:  4
and this is the gene:  LR                                        0.0539181
activations      [softplus, hard_sigmoid, softplus]
batch_size                                       32
epochs                                           19
gene_name               lab3000_n1e1p1b2+Gen1+gene4
layer_units                           [14, 392, 25]
model_name     lab3000_n1e1p1b2+Gen1+gene4+model.h5
nb_layers                                         3
optimizer                                     Nadam
Name: 4, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/19
8083/8083 [==============================] - 6s - loss: 1.8898 - acc: 0.5295 - val_loss: 1.4947 - val_acc: 0.6485
Epoch 2/19
8083/8083 [==============================] - 4s - loss: 1.2199 - acc: 0.7112 - val_loss: 1.2765 - val_acc: 0.6897
Epoch 3/19
8083/8083 [==============================] - 4s - loss: 0.8783 - acc: 0.7882 - val_loss: 1.2140 - val_acc: 0.7419
Epoch 4/19
8083/8083 [==============================] - 4s - loss: 0.6271 - acc: 0.8497 - val_loss: 1.2153 - val_acc: 0.7442
Epoch 5/19
8083/8083 [==============================] - 4s - loss: 0.4564 - acc: 0.8898 - val_loss: 1.3228 - val_acc: 0.7442
Epoch 6/19
8083/8083 [==============================] - 4s - loss: 0.3504 - acc: 0.9156 - val_loss: 1.3067 - val_acc: 0.7508
Epoch 7/19
8083/8083 [==============================] - 4s - loss: 0.2708 - acc: 0.9329 - val_loss: 1.3883 - val_acc: 0.7419
Epoch 8/19
8083/8083 [==============================] - 3s - loss: 0.2236 - acc: 0.9452 - val_loss: 1.4379 - val_acc: 0.7475
Epoch 9/19
8083/8083 [==============================] - 3s - loss: 0.1913 - acc: 0.9521 - val_loss: 1.3994 - val_acc: 0.7519
Epoch 10/19
8083/8083 [==============================] - 3s - loss: 0.1685 - acc: 0.9535 - val_loss: 1.4604 - val_acc: 0.7275
Epoch 11/19
8083/8083 [==============================] - 3s - loss: 0.1571 - acc: 0.9563 - val_loss: 1.5303 - val_acc: 0.7375
Epoch 12/19
8083/8083 [==============================] - 3s - loss: 0.1446 - acc: 0.9574 - val_loss: 1.4873 - val_acc: 0.7453
Epoch 13/19
8083/8083 [==============================] - 3s - loss: 0.1412 - acc: 0.9550 - val_loss: 1.5374 - val_acc: 0.7408
Epoch 14/19
8083/8083 [==============================] - 3s - loss: 0.1294 - acc: 0.9581 - val_loss: 1.5575 - val_acc: 0.7419
Epoch 15/19
8083/8083 [==============================] - 3s - loss: 0.1244 - acc: 0.9600 - val_loss: 1.5377 - val_acc: 0.7341
Epoch 16/19
8083/8083 [==============================] - 3s - loss: 0.1203 - acc: 0.9581 - val_loss: 1.5436 - val_acc: 0.7286
Epoch 17/19
8083/8083 [==============================] - 3s - loss: 0.1174 - acc: 0.9600 - val_loss: 1.6000 - val_acc: 0.7341
Epoch 18/19
8083/8083 [==============================] - 3s - loss: 0.1189 - acc: 0.9548 - val_loss: 1.5404 - val_acc: 0.7497
Epoch 19/19
8083/8083 [==============================] - 3s - loss: 0.1095 - acc: 0.9583 - val_loss: 1.6486 - val_acc: 0.7341
2080/2246 [==========================>...] - ETA: 0sin the else
this is the index:  5
and this is the gene:  LR                                                      0.119733
activations    [softsign, relu, softmax, softsign, elu, relu,...
batch_size                                                     8
epochs                                                         5
gene_name                            lab3000_n1e1p1b2+Gen1+gene5
layer_units     [252, 481, 165, 512, 323, 85, 25, 415, 351, 123]
model_name                  lab3000_n1e1p1b2+Gen1+gene5+model.h5
nb_layers                                                     10
optimizer                                                    sgd
Name: 5, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/5
8083/8083 [==============================] - 47s - loss: 2.5914 - acc: 0.3507 - val_loss: 2.4286 - val_acc: 0.3537
Epoch 2/5
8083/8083 [==============================] - 46s - loss: 2.4157 - acc: 0.3515 - val_loss: 2.4155 - val_acc: 0.3537
Epoch 3/5
8080/8083 [============================>.] - ETA: 0s - loss: 2.4093 - acc: 0.3514_______Stopping after 120 seconds.
8083/8083 [==============================] - 1600s - loss: 2.4093 - acc: 0.3515 - val_loss: 2.4105 - val_acc: 0.3537
2246/2246 [==============================] - 4s     
in the else
this is the index:  6
and this is the gene:  LR                                                    0.00263484
activations    [tanh, hard_sigmoid, sigmoid, softsign, linear...
batch_size                                                   128
epochs                                                         5
gene_name                            lab3000_n1e1p1b2+Gen1+gene6
layer_units      [149, 159, 2, 125, 155, 351, 99, 384, 351, 263]
model_name                  lab3000_n1e1p1b2+Gen1+gene6+model.h5
nb_layers                                                     10
optimizer                                                Adagrad
Name: 6, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/5
8083/8083 [==============================] - 12s - loss: 3.5224 - acc: 0.3194 - val_loss: 3.4021 - val_acc: 0.3537
Epoch 2/5
8083/8083 [==============================] - 6s - loss: 3.3310 - acc: 0.3515 - val_loss: 3.2742 - val_acc: 0.3537
Epoch 3/5
8083/8083 [==============================] - 6s - loss: 3.2232 - acc: 0.3515 - val_loss: 3.1838 - val_acc: 0.3537
Epoch 4/5
8083/8083 [==============================] - 6s - loss: 3.1425 - acc: 0.3515 - val_loss: 3.1130 - val_acc: 0.3537
Epoch 5/5
8083/8083 [==============================] - 6s - loss: 3.0777 - acc: 0.3515 - val_loss: 3.0547 - val_acc: 0.3537
2144/2246 [===========================>..] - ETA: 0sin the else
this is the index:  7
and this is the gene:  LR                                                      0.354097
activations    [softplus, hard_sigmoid, elu, elu, elu, elu, e...
batch_size                                                     8
epochs                                                         9
gene_name                            lab3000_n1e1p1b2+Gen1+gene7
layer_units                  [416, 89, 497, 2, 2, 2, 2, 2, 2, 2]
model_name                  lab3000_n1e1p1b2+Gen1+gene7+model.h5
nb_layers                                                     10
optimizer                                                Adagrad
Name: 7, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/9
8083/8083 [==============================] - 96s - loss: 2.9682 - acc: 0.3146 - val_loss: 2.6668 - val_acc: 0.3537
Epoch 2/9
8080/8083 [============================>.] - ETA: 0s - loss: 2.5680 - acc: 0.3516_______Stopping after 120 seconds.
8083/8083 [==============================] - 96s - loss: 2.5686 - acc: 0.3515 - val_loss: 2.5140 - val_acc: 0.3537
2246/2246 [==============================] - 3s     
in the else
this is the index:  8
and this is the gene:  LR                                       0.00263484
activations                              [softsign]
batch_size                                        8
epochs                                            5
gene_name               lab3000_n1e1p1b2+Gen1+gene8
layer_units                                   [384]
model_name     lab3000_n1e1p1b2+Gen1+gene8+model.h5
nb_layers                                         1
optimizer                                      Adam
Name: 8, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/5
8083/8083 [==============================] - 113s - loss: 0.9869 - acc: 0.7803 - val_loss: 0.7745 - val_acc: 0.8387
Epoch 2/5
8080/8083 [============================>.] - ETA: 0s - loss: 0.3193 - acc: 0.9262_______Stopping after 120 seconds.
8083/8083 [==============================] - 111s - loss: 0.3192 - acc: 0.9263 - val_loss: 0.8530 - val_acc: 0.8154
2246/2246 [==============================] - 3s     
in the else
this is the index:  9
and this is the gene:  LR                                                     0.0539181
activations    [relu, sigmoid, elu, sigmoid, hard_sigmoid, ta...
batch_size                                                    32
epochs                                                        16
gene_name                            lab3000_n1e1p1b2+Gen1+gene9
layer_units                      [14, 392, 25, 2, 2, 2, 2, 2, 2]
model_name                  lab3000_n1e1p1b2+Gen1+gene9+model.h5
nb_layers                                                      9
optimizer                                                RMSProp
Name: 9, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/16
8083/8083 [==============================] - 8s - loss: 3.3849 - acc: 0.1947 - val_loss: 3.0737 - val_acc: 0.2191
Epoch 2/16
8083/8083 [==============================] - 4s - loss: 2.8178 - acc: 0.2168 - val_loss: 2.6092 - val_acc: 0.2191
Epoch 3/16
8083/8083 [==============================] - 5s - loss: 2.4975 - acc: 0.3011 - val_loss: 2.4325 - val_acc: 0.3537
Epoch 4/16
8083/8083 [==============================] - 5s - loss: 2.4142 - acc: 0.3515 - val_loss: 2.4128 - val_acc: 0.3537
Epoch 5/16
8083/8083 [==============================] - 4s - loss: 2.4053 - acc: 0.3515 - val_loss: 2.4107 - val_acc: 0.3537
Epoch 6/16
8083/8083 [==============================] - 4s - loss: 2.4036 - acc: 0.3515 - val_loss: 2.4103 - val_acc: 0.3537
Epoch 7/16
8083/8083 [==============================] - 4s - loss: 2.4030 - acc: 0.3515 - val_loss: 2.4101 - val_acc: 0.3537
Epoch 8/16
8083/8083 [==============================] - 4s - loss: 2.4031 - acc: 0.3515 - val_loss: 2.4096 - val_acc: 0.3537
Epoch 9/16
8083/8083 [==============================] - 4s - loss: 2.4029 - acc: 0.3515 - val_loss: 2.4095 - val_acc: 0.3537
Epoch 10/16
8083/8083 [==============================] - 4s - loss: 2.4032 - acc: 0.3515 - val_loss: 2.4099 - val_acc: 0.3537
Epoch 11/16
8083/8083 [==============================] - 4s - loss: 2.4036 - acc: 0.3515 - val_loss: 2.4102 - val_acc: 0.3537
Epoch 12/16
8083/8083 [==============================] - 4s - loss: 2.4036 - acc: 0.3515 - val_loss: 2.4102 - val_acc: 0.3537
Epoch 13/16
8083/8083 [==============================] - 4s - loss: 2.4036 - acc: 0.3515 - val_loss: 2.4107 - val_acc: 0.3537
Epoch 14/16
8083/8083 [==============================] - 4s - loss: 2.4039 - acc: 0.3515 - val_loss: 2.4109 - val_acc: 0.3537
Epoch 15/16
8083/8083 [==============================] - 4s - loss: 2.4040 - acc: 0.3515 - val_loss: 2.4110 - val_acc: 0.3537
Epoch 16/16
8083/8083 [==============================] - 4s - loss: 2.4041 - acc: 0.3515 - val_loss: 2.4106 - val_acc: 0.3537
2176/2246 [============================>.] - ETA: 0sin the else
this is the index:  10
and this is the gene:  LR                                         0.0138704
activations            [softplus, hard_sigmoid, elu]
batch_size                                       128
epochs                                            16
gene_name               lab3000_n1e1p1b2+Gen1+gene10
layer_units                           [416, 89, 497]
model_name     lab3000_n1e1p1b2+Gen1+gene10+model.h5
nb_layers                                          3
optimizer                                     Adamax
Name: 10, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/16
8083/8083 [==============================] - 15s - loss: 1.9282 - acc: 0.5253 - val_loss: 1.4679 - val_acc: 0.6574
Epoch 2/16
8083/8083 [==============================] - 12s - loss: 1.2221 - acc: 0.7153 - val_loss: 1.1870 - val_acc: 0.7175
Epoch 3/16
8083/8083 [==============================] - 12s - loss: 0.9486 - acc: 0.7778 - val_loss: 1.0596 - val_acc: 0.7497
Epoch 4/16
8083/8083 [==============================] - 12s - loss: 0.7557 - acc: 0.8221 - val_loss: 0.9617 - val_acc: 0.7831
Epoch 5/16
8083/8083 [==============================] - 12s - loss: 0.5966 - acc: 0.8571 - val_loss: 0.9196 - val_acc: 0.7931
Epoch 6/16
8083/8083 [==============================] - 12s - loss: 0.4782 - acc: 0.8863 - val_loss: 0.9049 - val_acc: 0.7976
Epoch 7/16
8083/8083 [==============================] - 11s - loss: 0.3752 - acc: 0.9140 - val_loss: 0.9020 - val_acc: 0.8087
Epoch 8/16
8083/8083 [==============================] - 12s - loss: 0.3033 - acc: 0.9273 - val_loss: 0.8974 - val_acc: 0.8131
Epoch 9/16
8083/8083 [==============================] - 13s - loss: 0.2448 - acc: 0.9385 - val_loss: 0.9385 - val_acc: 0.8176
Epoch 10/16
8064/8083 [============================>.] - ETA: 0s - loss: 0.2071 - acc: 0.9435_______Stopping after 120 seconds.
8083/8083 [==============================] - 13s - loss: 0.2069 - acc: 0.9435 - val_loss: 0.9586 - val_acc: 0.8098
2240/2246 [============================>.] - ETA: 0sin the else
this is the index:  11
and this is the gene:  LR                                        0.00269799
activations            [softplus, hard_sigmoid, elu]
batch_size                                       512
epochs                                             9
gene_name               lab3000_n1e1p1b2+Gen1+gene11
layer_units                           [416, 89, 497]
model_name     lab3000_n1e1p1b2+Gen1+gene11+model.h5
nb_layers                                          3
optimizer                                        sgd
Name: 11, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/9
8083/8083 [==============================] - 10s - loss: 3.2532 - acc: 0.2468 - val_loss: 2.6642 - val_acc: 0.3537
Epoch 2/9
8083/8083 [==============================] - 6s - loss: 2.5804 - acc: 0.3515 - val_loss: 2.5275 - val_acc: 0.3537
Epoch 3/9
8083/8083 [==============================] - 8s - loss: 2.5007 - acc: 0.3515 - val_loss: 2.4839 - val_acc: 0.3537
Epoch 4/9
8083/8083 [==============================] - 7s - loss: 2.4644 - acc: 0.3515 - val_loss: 2.4591 - val_acc: 0.3537
Epoch 5/9
8083/8083 [==============================] - 6s - loss: 2.4434 - acc: 0.3515 - val_loss: 2.4446 - val_acc: 0.3537
Epoch 6/9
8083/8083 [==============================] - 6s - loss: 2.4302 - acc: 0.3515 - val_loss: 2.4350 - val_acc: 0.3537
Epoch 7/9
8083/8083 [==============================] - 6s - loss: 2.4215 - acc: 0.3515 - val_loss: 2.4278 - val_acc: 0.3537
Epoch 8/9
8083/8083 [==============================] - 7s - loss: 2.4148 - acc: 0.3515 - val_loss: 2.4222 - val_acc: 0.3537
Epoch 9/9
8083/8083 [==============================] - 6s - loss: 2.4101 - acc: 0.3515 - val_loss: 2.4175 - val_acc: 0.3537
2208/2246 [============================>.] - ETA: 0sin the else
this is the index:  12
and this is the gene:  LR                                                     0.0138704
activations    [linear, hard_sigmoid, hard_sigmoid, hard_sigm...
batch_size                                                   128
epochs                                                        16
gene_name                           lab3000_n1e1p1b2+Gen1+gene12
layer_units      [149, 159, 2, 125, 155, 351, 99, 384, 351, 263]
model_name                 lab3000_n1e1p1b2+Gen1+gene12+model.h5
nb_layers                                                     10
optimizer                                                Adagrad
Name: 12, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/16
8083/8083 [==============================] - 10s - loss: 2.5197 - acc: 0.3384 - val_loss: 2.4272 - val_acc: 0.3537
Epoch 2/16
8083/8083 [==============================] - 7s - loss: 2.4162 - acc: 0.3515 - val_loss: 2.4199 - val_acc: 0.3537
Epoch 3/16
8083/8083 [==============================] - 7s - loss: 2.4122 - acc: 0.3515 - val_loss: 2.4161 - val_acc: 0.3537
Epoch 4/16
8083/8083 [==============================] - 7s - loss: 2.4102 - acc: 0.3515 - val_loss: 2.4370 - val_acc: 0.2191
Epoch 5/16
8083/8083 [==============================] - 7s - loss: 2.4104 - acc: 0.3479 - val_loss: 2.4130 - val_acc: 0.3537
Epoch 6/16
8083/8083 [==============================] - 7s - loss: 2.4099 - acc: 0.3515 - val_loss: 2.4221 - val_acc: 0.3537
Epoch 7/16
8083/8083 [==============================] - 7s - loss: 2.4091 - acc: 0.3515 - val_loss: 2.4181 - val_acc: 0.3537
Epoch 8/16
8083/8083 [==============================] - 7s - loss: 2.4080 - acc: 0.3515 - val_loss: 2.4119 - val_acc: 0.3537
Epoch 9/16
8083/8083 [==============================] - 6s - loss: 2.4083 - acc: 0.3515 - val_loss: 2.4150 - val_acc: 0.3537
Epoch 10/16
8083/8083 [==============================] - 6s - loss: 2.4076 - acc: 0.3515 - val_loss: 2.4175 - val_acc: 0.3537
Epoch 11/16
8083/8083 [==============================] - 6s - loss: 2.4078 - acc: 0.3515 - val_loss: 2.4135 - val_acc: 0.3537
Epoch 12/16
8083/8083 [==============================] - 7s - loss: 2.4072 - acc: 0.3515 - val_loss: 2.4132 - val_acc: 0.3537
Epoch 13/16
8083/8083 [==============================] - 7s - loss: 2.4076 - acc: 0.3515 - val_loss: 2.4137 - val_acc: 0.3537
Epoch 14/16
8083/8083 [==============================] - 7s - loss: 2.4068 - acc: 0.3515 - val_loss: 2.4177 - val_acc: 0.3537
Epoch 15/16
8083/8083 [==============================] - 6s - loss: 2.4062 - acc: 0.3515 - val_loss: 2.4098 - val_acc: 0.3537
Epoch 16/16
8083/8083 [==============================] - 7s - loss: 2.4058 - acc: 0.3515 - val_loss: 2.4251 - val_acc: 0.3537
2144/2246 [===========================>..] - ETA: 0sin the else
this is the index:  13
and this is the gene:  LR                                                      0.053448
activations    [softplus, hard_sigmoid, softplus, softplus, s...
batch_size                                                   256
epochs                                                         5
gene_name                           lab3000_n1e1p1b2+Gen1+gene13
layer_units                   [14, 392, 25, 2, 2, 2, 2, 2, 2, 2]
model_name                 lab3000_n1e1p1b2+Gen1+gene13+model.h5
nb_layers                                                     10
optimizer                                                Adagrad
Name: 13, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/5
8083/8083 [==============================] - 5s - loss: 3.6704 - acc: 0.1852 - val_loss: 3.5216 - val_acc: 0.3537
Epoch 2/5
8083/8083 [==============================] - 1s - loss: 3.4045 - acc: 0.3515 - val_loss: 3.3020 - val_acc: 0.3537
Epoch 3/5
8083/8083 [==============================] - 1s - loss: 3.1994 - acc: 0.3515 - val_loss: 3.1163 - val_acc: 0.3537
Epoch 4/5
8083/8083 [==============================] - 1s - loss: 3.0252 - acc: 0.3515 - val_loss: 2.9585 - val_acc: 0.3537
Epoch 5/5
8083/8083 [==============================] - 1s - loss: 2.8798 - acc: 0.3515 - val_loss: 2.8276 - val_acc: 0.3537
2208/2246 [============================>.] - ETA: 0sin the else
this is the index:  14
and this is the gene:  LR                                                     0.252698
activations    [sigmoid, sigmoid, hard_sigmoid, relu, softplus]
batch_size                                                  512
epochs                                                       16
gene_name                          lab3000_n1e1p1b2+Gen1+gene14
layer_units                             [494, 283, 95, 59, 186]
model_name                lab3000_n1e1p1b2+Gen1+gene14+model.h5
nb_layers                                                     5
optimizer                                               RMSProp
Name: 14, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/16
8083/8083 [==============================] - 11s - loss: 2.6461 - acc: 0.3066 - val_loss: 2.3032 - val_acc: 0.3582
Epoch 2/16
8083/8083 [==============================] - 8s - loss: 2.1568 - acc: 0.4057 - val_loss: 1.9804 - val_acc: 0.4661
Epoch 3/16
8083/8083 [==============================] - 8s - loss: 1.8666 - acc: 0.5023 - val_loss: 1.7534 - val_acc: 0.5517
Epoch 4/16
8083/8083 [==============================] - 8s - loss: 1.6650 - acc: 0.5740 - val_loss: 1.6367 - val_acc: 0.5840
Epoch 5/16
8083/8083 [==============================] - 8s - loss: 1.5782 - acc: 0.5935 - val_loss: 1.5911 - val_acc: 0.6007
Epoch 6/16
8083/8083 [==============================] - 8s - loss: 1.5297 - acc: 0.6139 - val_loss: 1.5809 - val_acc: 0.6140
Epoch 7/16
8083/8083 [==============================] - 8s - loss: 1.4687 - acc: 0.6323 - val_loss: 1.5270 - val_acc: 0.6151
Epoch 8/16
8083/8083 [==============================] - 8s - loss: 1.3799 - acc: 0.6637 - val_loss: 1.4549 - val_acc: 0.6496
Epoch 9/16
8083/8083 [==============================] - 8s - loss: 1.3070 - acc: 0.6825 - val_loss: 1.4666 - val_acc: 0.6307
Epoch 10/16
8083/8083 [==============================] - 8s - loss: 1.1955 - acc: 0.7143 - val_loss: 1.4007 - val_acc: 0.6596
Epoch 11/16
8083/8083 [==============================] - 8s - loss: 1.1808 - acc: 0.7148 - val_loss: 1.4119 - val_acc: 0.6641
Epoch 12/16
8083/8083 [==============================] - 8s - loss: 1.1220 - acc: 0.7298 - val_loss: 1.4723 - val_acc: 0.6318
Epoch 13/16
8083/8083 [==============================] - 8s - loss: 1.0746 - acc: 0.7375 - val_loss: 1.5463 - val_acc: 0.6263
Epoch 14/16
8083/8083 [==============================] - 7s - loss: 1.0333 - acc: 0.7516 - val_loss: 1.5009 - val_acc: 0.6541
Epoch 15/16
7680/8083 [===========================>..] - ETA: 0s - loss: 1.0129 - acc: 0.7527_______Stopping after 120 seconds.
8083/8083 [==============================] - 8s - loss: 1.0170 - acc: 0.7515 - val_loss: 1.3646 - val_acc: 0.6696
2240/2246 [============================>.] - ETA: 0sin the else
this is the index:  15
and this is the gene:  LR                                        0.00263484
activations                               [softsign]
batch_size                                         8
epochs                                             5
gene_name               lab3000_n1e1p1b2+Gen1+gene15
layer_units                                     [99]
model_name     lab3000_n1e1p1b2+Gen1+gene15+model.h5
nb_layers                                          1
optimizer                                       Adam
Name: 15, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/5
8083/8083 [==============================] - 42s - loss: 1.1151 - acc: 0.7601 - val_loss: 0.7862 - val_acc: 0.8287
Epoch 2/5
8083/8083 [==============================] - 38s - loss: 0.3820 - acc: 0.9176 - val_loss: 0.7615 - val_acc: 0.8309
Epoch 3/5
8080/8083 [============================>.] - ETA: 0s - loss: 0.2220 - acc: 0.9469_______Stopping after 120 seconds.
8083/8083 [==============================] - 40s - loss: 0.2219 - acc: 0.9469 - val_loss: 0.8293 - val_acc: 0.8220
2208/2246 [============================>.] - ETA: 0sin the else
this is the index:  16
and this is the gene:  LR                                                      0.252698
activations    [tanh, softsign, softsign, softmax, sigmoid, r...
batch_size                                                     8
epochs                                                         5
gene_name                           lab3000_n1e1p1b2+Gen1+gene16
layer_units     [252, 481, 165, 512, 323, 85, 25, 415, 351, 123]
model_name                 lab3000_n1e1p1b2+Gen1+gene16+model.h5
nb_layers                                                     10
optimizer                                                    sgd
Name: 16, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/5
8083/8083 [==============================] - 57s - loss: 2.7507 - acc: 0.3507 - val_loss: 2.4646 - val_acc: 0.3537
Epoch 2/5
8083/8083 [==============================] - 54s - loss: 2.4330 - acc: 0.3515 - val_loss: 2.4282 - val_acc: 0.3537
Epoch 3/5
8080/8083 [============================>.] - ETA: 0s - loss: 2.4153 - acc: 0.3514_______Stopping after 120 seconds.
8083/8083 [==============================] - 55s - loss: 2.4148 - acc: 0.3515 - val_loss: 2.4182 - val_acc: 0.3537
2208/2246 [============================>.] - ETA: 0sin the else
this is the index:  17
and this is the gene:  LR                                          0.252698
activations                 [softmax, softsign, elu]
batch_size                                       512
epochs                                             9
gene_name               lab3000_n1e1p1b2+Gen1+gene17
layer_units                          [139, 158, 491]
model_name     lab3000_n1e1p1b2+Gen1+gene17+model.h5
nb_layers                                          3
optimizer                                       Adam
Name: 17, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/9
8083/8083 [==============================] - 7s - loss: 3.3771 - acc: 0.3254 - val_loss: 2.5791 - val_acc: 0.3537
Epoch 2/9
8083/8083 [==============================] - 3s - loss: 2.4549 - acc: 0.3736 - val_loss: 2.3635 - val_acc: 0.3971
Epoch 3/9
8083/8083 [==============================] - 3s - loss: 2.2525 - acc: 0.3715 - val_loss: 2.1104 - val_acc: 0.3993
Epoch 4/9
8083/8083 [==============================] - 3s - loss: 1.9574 - acc: 0.4784 - val_loss: 1.8062 - val_acc: 0.5306
Epoch 5/9
8083/8083 [==============================] - 3s - loss: 1.6566 - acc: 0.5931 - val_loss: 1.5930 - val_acc: 0.6107
Epoch 6/9
8083/8083 [==============================] - 3s - loss: 1.4599 - acc: 0.6482 - val_loss: 1.4734 - val_acc: 0.6418
Epoch 7/9
8083/8083 [==============================] - 4s - loss: 1.3115 - acc: 0.6629 - val_loss: 1.3863 - val_acc: 0.6585
Epoch 8/9
8083/8083 [==============================] - 4s - loss: 1.1816 - acc: 0.6922 - val_loss: 1.3264 - val_acc: 0.6652
Epoch 9/9
8083/8083 [==============================] - 4s - loss: 1.0571 - acc: 0.7117 - val_loss: 1.2812 - val_acc: 0.6785
2208/2246 [============================>.] - ETA: 0sin the else
this is the index:  18
and this is the gene:  LR                                                     0.0117768
activations    [tanh, softsign, softsign, softmax, sigmoid, r...
batch_size                                                   512
epochs                                                         5
gene_name                           lab3000_n1e1p1b2+Gen1+gene18
layer_units          [252, 481, 512, 323, 85, 25, 415, 351, 123]
model_name                 lab3000_n1e1p1b2+Gen1+gene18+model.h5
nb_layers                                                      9
optimizer                                                RMSProp
Name: 18, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/5
8083/8083 [==============================] - 10s - loss: 2.6437 - acc: 0.2895 - val_loss: 2.3710 - val_acc: 0.3537
Epoch 2/5
8083/8083 [==============================] - 7s - loss: 2.3448 - acc: 0.3255 - val_loss: 2.2221 - val_acc: 0.2158
Epoch 3/5
8083/8083 [==============================] - 6s - loss: 2.1937 - acc: 0.3468 - val_loss: 2.0198 - val_acc: 0.3960
Epoch 4/5
8083/8083 [==============================] - 6s - loss: 1.9428 - acc: 0.3880 - val_loss: 2.5812 - val_acc: 0.3537
Epoch 5/5
8083/8083 [==============================] - 6s - loss: 1.9398 - acc: 0.3771 - val_loss: 1.9179 - val_acc: 0.3971
2240/2246 [============================>.] - ETA: 0sin the else
this is the index:  19
and this is the gene:  LR                                        0.00263484
activations           [softsign, softsign, softsign]
batch_size                                        32
epochs                                             5
gene_name               lab3000_n1e1p1b2+Gen1+gene19
layer_units                              [287, 2, 2]
model_name     lab3000_n1e1p1b2+Gen1+gene19+model.h5
nb_layers                                          3
optimizer                                    RMSProp
Name: 19, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/5
8083/8083 [==============================] - 26s - loss: 3.5529 - acc: 0.4965 - val_loss: 3.3051 - val_acc: 0.5428
Epoch 2/5
8083/8083 [==============================] - 23s - loss: 3.0525 - acc: 0.5440 - val_loss: 2.8270 - val_acc: 0.5439
Epoch 3/5
8083/8083 [==============================] - 22s - loss: 2.5954 - acc: 0.5478 - val_loss: 2.4214 - val_acc: 0.5428
Epoch 4/5
8083/8083 [==============================] - 23s - loss: 2.2302 - acc: 0.5512 - val_loss: 2.1333 - val_acc: 0.5439
Epoch 5/5
8064/8083 [============================>.] - ETA: 0s - loss: 1.9813 - acc: 0.5526_______Stopping after 120 seconds.
8083/8083 [==============================] - 23s - loss: 1.9810 - acc: 0.5528 - val_loss: 1.9501 - val_acc: 0.5439
2208/2246 [============================>.] - ETA: 0sin the else
this is the index:  20
and this is the gene:  LR                                         0.0138704
activations            [softplus, hard_sigmoid, elu]
batch_size                                       128
epochs                                            16
gene_name               lab3000_n1e1p1b2+Gen1+gene20
layer_units                           [416, 89, 497]
model_name     lab3000_n1e1p1b2+Gen1+gene20+model.h5
nb_layers                                          3
optimizer                                     Adamax
Name: 20, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/16
8083/8083 [==============================] - 15s - loss: 1.9916 - acc: 0.4891 - val_loss: 1.5464 - val_acc: 0.6051
Epoch 2/16
8083/8083 [==============================] - 11s - loss: 1.2699 - acc: 0.7023 - val_loss: 1.1978 - val_acc: 0.7086
Epoch 3/16
8083/8083 [==============================] - 12s - loss: 0.9546 - acc: 0.7808 - val_loss: 1.0391 - val_acc: 0.7642
Epoch 4/16
8083/8083 [==============================] - 11s - loss: 0.7447 - acc: 0.8273 - val_loss: 0.9653 - val_acc: 0.7853
Epoch 5/16
8083/8083 [==============================] - 11s - loss: 0.5888 - acc: 0.8588 - val_loss: 0.9137 - val_acc: 0.7942
Epoch 6/16
8083/8083 [==============================] - 11s - loss: 0.4665 - acc: 0.8909 - val_loss: 0.8967 - val_acc: 0.8020
Epoch 7/16
8083/8083 [==============================] - 12s - loss: 0.3738 - acc: 0.9138 - val_loss: 0.8877 - val_acc: 0.8065
Epoch 8/16
8083/8083 [==============================] - 12s - loss: 0.3027 - acc: 0.9268 - val_loss: 0.9134 - val_acc: 0.8031
Epoch 9/16
8083/8083 [==============================] - 12s - loss: 0.2426 - acc: 0.9390 - val_loss: 0.9213 - val_acc: 0.8065
Epoch 10/16
8064/8083 [============================>.] - ETA: 0s - loss: 0.2082 - acc: 0.9456_______Stopping after 120 seconds.
8083/8083 [==============================] - 12s - loss: 0.2079 - acc: 0.9457 - val_loss: 0.9374 - val_acc: 0.8087
2176/2246 [============================>.] - ETA: 0sin the else
this is the index:  21
and this is the gene:  LR                                         0.0138704
activations     [linear, hard_sigmoid, hard_sigmoid]
batch_size                                       128
epochs                                            16
gene_name               lab3000_n1e1p1b2+Gen1+gene21
layer_units                            [14, 392, 25]
model_name     lab3000_n1e1p1b2+Gen1+gene21+model.h5
nb_layers                                          3
optimizer                                      Nadam
Name: 21, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/16
8083/8083 [==============================] - 5s - loss: 2.7984 - acc: 0.3471 - val_loss: 2.3574 - val_acc: 0.5039
Epoch 2/16
8083/8083 [==============================] - 2s - loss: 2.2183 - acc: 0.5363 - val_loss: 2.1512 - val_acc: 0.5417
Epoch 3/16
8083/8083 [==============================] - 2s - loss: 2.0453 - acc: 0.5491 - val_loss: 1.9764 - val_acc: 0.5417
Epoch 4/16
8083/8083 [==============================] - 2s - loss: 1.7766 - acc: 0.5807 - val_loss: 1.7446 - val_acc: 0.5806
Epoch 5/16
8083/8083 [==============================] - 2s - loss: 1.6005 - acc: 0.6145 - val_loss: 1.6669 - val_acc: 0.5884
Epoch 6/16
8083/8083 [==============================] - 2s - loss: 1.5022 - acc: 0.6493 - val_loss: 1.5939 - val_acc: 0.6140
Epoch 7/16
8083/8083 [==============================] - 2s - loss: 1.4297 - acc: 0.6562 - val_loss: 1.5566 - val_acc: 0.6140
Epoch 8/16
8083/8083 [==============================] - 2s - loss: 1.3733 - acc: 0.6588 - val_loss: 1.5248 - val_acc: 0.6218
Epoch 9/16
8083/8083 [==============================] - 2s - loss: 1.3282 - acc: 0.6569 - val_loss: 1.4968 - val_acc: 0.6196
Epoch 10/16
8083/8083 [==============================] - 2s - loss: 1.2902 - acc: 0.6602 - val_loss: 1.4852 - val_acc: 0.6196
Epoch 11/16
8083/8083 [==============================] - 2s - loss: 1.2537 - acc: 0.6678 - val_loss: 1.4614 - val_acc: 0.6240
Epoch 12/16
8083/8083 [==============================] - 2s - loss: 1.1888 - acc: 0.6726 - val_loss: 1.4445 - val_acc: 0.6274
Epoch 13/16
8083/8083 [==============================] - 2s - loss: 1.1442 - acc: 0.6849 - val_loss: 1.4293 - val_acc: 0.6329
Epoch 14/16
8083/8083 [==============================] - 2s - loss: 1.1114 - acc: 0.6919 - val_loss: 1.4313 - val_acc: 0.6263
Epoch 15/16
8083/8083 [==============================] - 2s - loss: 1.0864 - acc: 0.6963 - val_loss: 1.4169 - val_acc: 0.6285
Epoch 16/16
8083/8083 [==============================] - 2s - loss: 1.0611 - acc: 0.6978 - val_loss: 1.4075 - val_acc: 0.6407
2080/2246 [==========================>...] - ETA: 0sin the else
this is the index:  22
and this is the gene:  LR                                                      0.252698
activations    [tanh, softsign, softsign, softmax, sigmoid, r...
batch_size                                                     8
epochs                                                         9
gene_name                           lab3000_n1e1p1b2+Gen1+gene22
layer_units     [252, 481, 165, 512, 323, 85, 25, 415, 351, 123]
model_name                 lab3000_n1e1p1b2+Gen1+gene22+model.h5
nb_layers                                                     10
optimizer                                                    sgd
Name: 22, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/9
8083/8083 [==============================] - 72s - loss: 2.7654 - acc: 0.3509 - val_loss: 2.4712 - val_acc: 0.3537
Epoch 2/9
8080/8083 [============================>.] - ETA: 0s - loss: 2.4375 - acc: 0.3515_______Stopping after 120 seconds.
8083/8083 [==============================] - 56s - loss: 2.4377 - acc: 0.3515 - val_loss: 2.4277 - val_acc: 0.3537
2208/2246 [============================>.] - ETA: 0sin the else
this is the index:  23
and this is the gene:  LR                                                    0.00268188
activations    [tanh, hard_sigmoid, sigmoid, softsign, linear...
batch_size                                                     8
epochs                                                         5
gene_name                           lab3000_n1e1p1b2+Gen1+gene23
layer_units     [252, 481, 165, 512, 323, 85, 25, 415, 351, 123]
model_name                 lab3000_n1e1p1b2+Gen1+gene23+model.h5
nb_layers                                                     10
optimizer                                                    sgd
Name: 23, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/5
8083/8083 [==============================] - 59s - loss: 3.1920 - acc: 0.3476 - val_loss: 2.7653 - val_acc: 0.3537
Epoch 2/5
8080/8083 [============================>.] - ETA: 0s - loss: 2.6479 - acc: 0.3516_______Stopping after 120 seconds.
8083/8083 [==============================] - 62s - loss: 2.6482 - acc: 0.3515 - val_loss: 2.5705 - val_acc: 0.3537
2240/2246 [============================>.] - ETA: 0sin the else
this is the index:  24
and this is the gene:  LR                                             0.252698
activations    [linear, softplus, relu, relu, softplus]
batch_size                                          512
epochs                                                9
gene_name                  lab3000_n1e1p1b2+Gen1+gene24
layer_units                    [96, 345, 345, 198, 276]
model_name        lab3000_n1e1p1b2+Gen1+gene24+model.h5
nb_layers                                             5
optimizer                                          Adam
Name: 24, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/9
8083/8083 [==============================] - 10s - loss: 2.5326 - acc: 0.3692 - val_loss: 2.0397 - val_acc: 0.4828
Epoch 2/9
8083/8083 [==============================] - 5s - loss: 1.8191 - acc: 0.5512 - val_loss: 1.6327 - val_acc: 0.6018
Epoch 3/9
8083/8083 [==============================] - 4s - loss: 1.4818 - acc: 0.6740 - val_loss: 1.4385 - val_acc: 0.6774
Epoch 4/9
8083/8083 [==============================] - 3s - loss: 1.1659 - acc: 0.7301 - val_loss: 1.2639 - val_acc: 0.7075
Epoch 5/9
8083/8083 [==============================] - 3s - loss: 0.9109 - acc: 0.7742 - val_loss: 1.2190 - val_acc: 0.7286
Epoch 6/9
8083/8083 [==============================] - 3s - loss: 0.6968 - acc: 0.8231 - val_loss: 1.2339 - val_acc: 0.7508
Epoch 7/9
8083/8083 [==============================] - 3s - loss: 0.5317 - acc: 0.8637 - val_loss: 1.3956 - val_acc: 0.7319
Epoch 8/9
8083/8083 [==============================] - 4s - loss: 0.4178 - acc: 0.8922 - val_loss: 1.4544 - val_acc: 0.7308
Epoch 9/9
8083/8083 [==============================] - 4s - loss: 0.3376 - acc: 0.9179 - val_loss: 1.4546 - val_acc: 0.7430
2144/2246 [===========================>..] - ETA: 0sin the else
this is the index:  25
and this is the gene:  LR                                         0.0138704
activations                   [linear, hard_sigmoid]
batch_size                                         8
epochs                                             5
gene_name               lab3000_n1e1p1b2+Gen1+gene25
layer_units                                 [4, 204]
model_name     lab3000_n1e1p1b2+Gen1+gene25+model.h5
nb_layers                                          2
optimizer                                      Nadam
Name: 25, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/5
8083/8083 [==============================] - 15s - loss: 1.5349 - acc: 0.6387 - val_loss: 1.1704 - val_acc: 0.7075
Epoch 2/5
8083/8083 [==============================] - 13s - loss: 0.9469 - acc: 0.7705 - val_loss: 1.0628 - val_acc: 0.7453
Epoch 3/5
8083/8083 [==============================] - 11s - loss: 0.6754 - acc: 0.8353 - val_loss: 1.1228 - val_acc: 0.7408
Epoch 4/5
8083/8083 [==============================] - 12s - loss: 0.5226 - acc: 0.8713 - val_loss: 1.1578 - val_acc: 0.7531
Epoch 5/5
8083/8083 [==============================] - 12s - loss: 0.4212 - acc: 0.8999 - val_loss: 1.2023 - val_acc: 0.7586
2208/2246 [============================>.] - ETA: 0sin the else
this is the index:  26
and this is the gene:  LR                                           0.00263484
activations    [softsign, relu, softmax, softsign, elu]
batch_size                                            8
epochs                                                5
gene_name                  lab3000_n1e1p1b2+Gen1+gene26
layer_units                    [96, 345, 345, 198, 276]
model_name        lab3000_n1e1p1b2+Gen1+gene26+model.h5
nb_layers                                             5
optimizer                                          Adam
Name: 26, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/5
8083/8083 [==============================] - 56s - loss: 1.7009 - acc: 0.5719 - val_loss: 1.4266 - val_acc: 0.6174
Epoch 2/5
8083/8083 [==============================] - 53s - loss: 1.2286 - acc: 0.6754 - val_loss: 1.2572 - val_acc: 0.6863
Epoch 3/5
8080/8083 [============================>.] - ETA: 0s - loss: 0.9013 - acc: 0.7682_______Stopping after 120 seconds.
8083/8083 [==============================] - 51s - loss: 0.9010 - acc: 0.7683 - val_loss: 1.0827 - val_acc: 0.7430
2246/2246 [==============================] - 5s     
in the else
this is the index:  27
and this is the gene:  LR                                         0.0539181
activations       [softplus, hard_sigmoid, softplus]
batch_size                                        32
epochs                                            19
gene_name               lab3000_n1e1p1b2+Gen1+gene27
layer_units                          [345, 345, 276]
model_name     lab3000_n1e1p1b2+Gen1+gene27+model.h5
nb_layers                                          3
optimizer                                    RMSProp
Name: 27, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/19
8083/8083 [==============================] - 37s - loss: 1.6374 - acc: 0.6097 - val_loss: 1.2608 - val_acc: 0.6986
Epoch 2/19
8083/8083 [==============================] - 28s - loss: 0.9946 - acc: 0.7688 - val_loss: 1.0036 - val_acc: 0.7720
Epoch 3/19
8083/8083 [==============================] - 27s - loss: 0.6930 - acc: 0.8351 - val_loss: 0.9286 - val_acc: 0.8009
Epoch 4/19
8064/8083 [============================>.] - ETA: 0s - loss: 0.5053 - acc: 0.8772_______Stopping after 120 seconds.
8083/8083 [==============================] - 41s - loss: 0.5061 - acc: 0.8771 - val_loss: 0.9812 - val_acc: 0.7820
2208/2246 [============================>.] - ETA: 0sin the else
this is the index:  28
and this is the gene:  LR                                                     0.0916252
activations    [relu, sigmoid, elu, sigmoid, hard_sigmoid, ta...
batch_size                                                     8
epochs                                                         4
gene_name                           lab3000_n1e1p1b2+Gen1+gene28
layer_units          [252, 481, 165, 512, 85, 25, 415, 351, 123]
model_name                 lab3000_n1e1p1b2+Gen1+gene28+model.h5
nb_layers                                                      9
optimizer                                                    sgd
Name: 28, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/4
8083/8083 [==============================] - 62s - loss: 2.4472 - acc: 0.3442 - val_loss: 2.4191 - val_acc: 0.3537
Epoch 2/4
8080/8083 [============================>.] - ETA: 0s - loss: 2.4198 - acc: 0.3426_______Stopping after 120 seconds.
8083/8083 [==============================] - 59s - loss: 2.4200 - acc: 0.3426 - val_loss: 2.4168 - val_acc: 0.3537
2240/2246 [============================>.] - ETA: 0sin the else
this is the index:  29
and this is the gene:  LR                                        0.00263484
activations                               [softplus]
batch_size                                       128
epochs                                             5
gene_name               lab3000_n1e1p1b2+Gen1+gene29
layer_units                                    [287]
model_name     lab3000_n1e1p1b2+Gen1+gene29+model.h5
nb_layers                                          1
optimizer                                       Adam
Name: 29, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/5
8083/8083 [==============================] - 15s - loss: 1.6924 - acc: 0.6214 - val_loss: 1.1677 - val_acc: 0.7275
Epoch 2/5
8083/8083 [==============================] - 9s - loss: 0.7760 - acc: 0.8265 - val_loss: 0.9350 - val_acc: 0.8120
Epoch 3/5
8083/8083 [==============================] - 9s - loss: 0.4672 - acc: 0.8982 - val_loss: 0.8632 - val_acc: 0.8287
Epoch 4/5
8083/8083 [==============================] - 9s - loss: 0.3173 - acc: 0.9307 - val_loss: 0.8687 - val_acc: 0.8220
Epoch 5/5
8083/8083 [==============================] - 9s - loss: 0.2459 - acc: 0.9438 - val_loss: 0.8818 - val_acc: 0.8198
2208/2246 [============================>.] - ETA: 0sin the else

In [16]:
n1e1p1b2_clade.select_parents()

In [17]:
n1e1p1b2_clade.breed()

Generation2


In [18]:
n1e1p1b2_clade.current_generation


Out[18]:
2

In [19]:
n1e1p1b2_clade.seed_models()

In [20]:
n1e1p1b2_clade.grow_models()


this is the index:  0
and this is the gene:  LR                                        0.0539181
activations                      [relu, tanh, tanh]
batch_size                                       32
epochs                                            5
gene_name               lab3000_n1e1p1b2+Gen2+gene0
layer_units                         [481, 415, 123]
model_name     lab3000_n1e1p1b2+Gen2+gene0+model.h5
nb_layers                                         3
optimizer                                   RMSProp
Name: 0, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/5
8083/8083 [==============================] - 41s - loss: 1.1038 - acc: 0.7470 - val_loss: 0.8049 - val_acc: 0.8220
Epoch 2/5
8083/8083 [==============================] - 34s - loss: 0.4563 - acc: 0.8988 - val_loss: 0.7969 - val_acc: 0.8198
Epoch 3/5
8083/8083 [==============================] - 36s - loss: 0.2643 - acc: 0.9400 - val_loss: 0.8117 - val_acc: 0.8276
Epoch 4/5
8064/8083 [============================>.] - ETA: 0s - loss: 0.1961 - acc: 0.9492_______Stopping after 120 seconds.
8083/8083 [==============================] - 40s - loss: 0.1962 - acc: 0.9492 - val_loss: 0.9015 - val_acc: 0.8231
2208/2246 [============================>.] - ETA: 0sthis is the index:  1
and this is the gene:  LR                                        0.0539181
activations           [softplus, hard_sigmoid, elu]
batch_size                                       32
epochs                                           19
gene_name               lab3000_n1e1p1b2+Gen2+gene1
layer_units                         [345, 345, 276]
model_name     lab3000_n1e1p1b2+Gen2+gene1+model.h5
nb_layers                                         3
optimizer                                    Adamax
Name: 1, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/19
8083/8083 [==============================] - 30s - loss: 1.6536 - acc: 0.6091 - val_loss: 1.2209 - val_acc: 0.7130
Epoch 2/19
8083/8083 [==============================] - 24s - loss: 0.9777 - acc: 0.7734 - val_loss: 1.0095 - val_acc: 0.7764
Epoch 3/19
8083/8083 [==============================] - 24s - loss: 0.7036 - acc: 0.8374 - val_loss: 0.9843 - val_acc: 0.7786
Epoch 4/19
8083/8083 [==============================] - 25s - loss: 0.5002 - acc: 0.8820 - val_loss: 0.8916 - val_acc: 0.8198
Epoch 5/19
8064/8083 [============================>.] - ETA: 0s - loss: 0.3773 - acc: 0.9077_______Stopping after 120 seconds.
8083/8083 [==============================] - 24s - loss: 0.3775 - acc: 0.9076 - val_loss: 0.8908 - val_acc: 0.8187
2208/2246 [============================>.] - ETA: 0sin the else
this is the index:  2
and this is the gene:  LR                                       0.00263484
activations                              [softsign]
batch_size                                      128
epochs                                            5
gene_name               lab3000_n1e1p1b2+Gen2+gene2
layer_units                                    [99]
model_name     lab3000_n1e1p1b2+Gen2+gene2+model.h5
nb_layers                                         1
optimizer                                      Adam
Name: 2, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/5
8083/8083 [==============================] - 9s - loss: 1.9349 - acc: 0.6073 - val_loss: 1.2945 - val_acc: 0.7019
Epoch 2/5
8083/8083 [==============================] - 5s - loss: 0.9581 - acc: 0.7991 - val_loss: 0.9828 - val_acc: 0.8042
Epoch 3/5
8083/8083 [==============================] - 5s - loss: 0.6145 - acc: 0.8847 - val_loss: 0.8588 - val_acc: 0.8298
Epoch 4/5
8083/8083 [==============================] - 4s - loss: 0.4204 - acc: 0.9218 - val_loss: 0.8001 - val_acc: 0.8343
Epoch 5/5
8083/8083 [==============================] - 4s - loss: 0.3071 - acc: 0.9396 - val_loss: 0.7809 - val_acc: 0.8343
2240/2246 [============================>.] - ETA: 0sin the else
this is the index:  3
and this is the gene:  LR                                       0.00263484
activations                              [softplus]
batch_size                                      128
epochs                                           19
gene_name               lab3000_n1e1p1b2+Gen2+gene3
layer_units                                   [287]
model_name     lab3000_n1e1p1b2+Gen2+gene3+model.h5
nb_layers                                         1
optimizer                                   RMSProp
Name: 3, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/19
8083/8083 [==============================] - 11s - loss: 1.4673 - acc: 0.6719 - val_loss: 1.1238 - val_acc: 0.7442
Epoch 2/19
8083/8083 [==============================] - 7s - loss: 0.7469 - acc: 0.8378 - val_loss: 0.9343 - val_acc: 0.8053
Epoch 3/19
8083/8083 [==============================] - 7s - loss: 0.4669 - acc: 0.9004 - val_loss: 0.9148 - val_acc: 0.8042
Epoch 4/19
8083/8083 [==============================] - 7s - loss: 0.3281 - acc: 0.9285 - val_loss: 0.9273 - val_acc: 0.8109
Epoch 5/19
8083/8083 [==============================] - 7s - loss: 0.2608 - acc: 0.9406 - val_loss: 0.9466 - val_acc: 0.8109
Epoch 6/19
8083/8083 [==============================] - 7s - loss: 0.2128 - acc: 0.9463 - val_loss: 0.9653 - val_acc: 0.8231
Epoch 7/19
8083/8083 [==============================] - 8s - loss: 0.1891 - acc: 0.9504 - val_loss: 1.0031 - val_acc: 0.8120
Epoch 8/19
8083/8083 [==============================] - 8s - loss: 0.1701 - acc: 0.9526 - val_loss: 1.1011 - val_acc: 0.7998
Epoch 9/19
8083/8083 [==============================] - 9s - loss: 0.1628 - acc: 0.9546 - val_loss: 1.0805 - val_acc: 0.8020
Epoch 10/19
8083/8083 [==============================] - 7s - loss: 0.1509 - acc: 0.9572 - val_loss: 1.1452 - val_acc: 0.7887
Epoch 11/19
8083/8083 [==============================] - 8s - loss: 0.1532 - acc: 0.9547 - val_loss: 1.1138 - val_acc: 0.7964
Epoch 12/19
8083/8083 [==============================] - 7s - loss: 0.1421 - acc: 0.9557 - val_loss: 1.1281 - val_acc: 0.7976
Epoch 13/19
8083/8083 [==============================] - 8s - loss: 0.1357 - acc: 0.9563 - val_loss: 1.2889 - val_acc: 0.7809
Epoch 14/19
8083/8083 [==============================] - 8s - loss: 0.1333 - acc: 0.9566 - val_loss: 1.1556 - val_acc: 0.7953
Epoch 15/19
8064/8083 [============================>.] - ETA: 0s - loss: 0.1296 - acc: 0.9552_______Stopping after 120 seconds.
8083/8083 [==============================] - 8s - loss: 0.1295 - acc: 0.9552 - val_loss: 1.1522 - val_acc: 0.7998
2240/2246 [============================>.] - ETA: 0sin the else
this is the index:  4
and this is the gene:  LR                                        0.0138704
activations                                   [elu]
batch_size                                      128
epochs                                            5
gene_name               lab3000_n1e1p1b2+Gen2+gene4
layer_units                                    [99]
model_name     lab3000_n1e1p1b2+Gen2+gene4+model.h5
nb_layers                                         1
optimizer                                    Adamax
Name: 4, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/5
8083/8083 [==============================] - 7s - loss: 1.7656 - acc: 0.6359 - val_loss: 1.2242 - val_acc: 0.7353
Epoch 2/5
8083/8083 [==============================] - 4s - loss: 0.9228 - acc: 0.8069 - val_loss: 1.0071 - val_acc: 0.7931
Epoch 3/5
8083/8083 [==============================] - 4s - loss: 0.6625 - acc: 0.8660 - val_loss: 0.9130 - val_acc: 0.8131
Epoch 4/5
8083/8083 [==============================] - 3s - loss: 0.5054 - acc: 0.9036 - val_loss: 0.8606 - val_acc: 0.8198
Epoch 5/5
8083/8083 [==============================] - 3s - loss: 0.4029 - acc: 0.9201 - val_loss: 0.8334 - val_acc: 0.8287
2208/2246 [============================>.] - ETA: 0sin the else
this is the index:  5
and this is the gene:  LR                                        0.0138704
activations          [softsign, softsign, softsign]
batch_size                                      128
epochs                                            5
gene_name               lab3000_n1e1p1b2+Gen2+gene5
layer_units                          [416, 89, 497]
model_name     lab3000_n1e1p1b2+Gen2+gene5+model.h5
nb_layers                                         3
optimizer                                    Adamax
Name: 5, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/5
8083/8083 [==============================] - 16s - loss: 1.5917 - acc: 0.6402 - val_loss: 1.1317 - val_acc: 0.7197
Epoch 2/5
8083/8083 [==============================] - 11s - loss: 0.8086 - acc: 0.8180 - val_loss: 0.8989 - val_acc: 0.7953
Epoch 3/5
8083/8083 [==============================] - 11s - loss: 0.4998 - acc: 0.8940 - val_loss: 0.8458 - val_acc: 0.8165
Epoch 4/5
8083/8083 [==============================] - 11s - loss: 0.3316 - acc: 0.9302 - val_loss: 0.8377 - val_acc: 0.8209
Epoch 5/5
8083/8083 [==============================] - 13s - loss: 0.2332 - acc: 0.9443 - val_loss: 0.8667 - val_acc: 0.8076
2240/2246 [============================>.] - ETA: 0sin the else
this is the index:  6
and this is the gene:  LR                                        0.0539181
activations                              [softplus]
batch_size                                      128
epochs                                           19
gene_name               lab3000_n1e1p1b2+Gen2+gene6
layer_units                                   [276]
model_name     lab3000_n1e1p1b2+Gen2+gene6+model.h5
nb_layers                                         1
optimizer                                      Adam
Name: 6, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/19
8083/8083 [==============================] - 13s - loss: 1.6921 - acc: 0.6155 - val_loss: 1.1593 - val_acc: 0.7308
Epoch 2/19
8083/8083 [==============================] - 8s - loss: 0.7880 - acc: 0.8243 - val_loss: 0.9476 - val_acc: 0.8076
Epoch 3/19
8083/8083 [==============================] - 8s - loss: 0.4710 - acc: 0.8999 - val_loss: 0.8564 - val_acc: 0.8209
Epoch 4/19
8083/8083 [==============================] - 8s - loss: 0.3236 - acc: 0.9302 - val_loss: 0.8818 - val_acc: 0.8220
Epoch 5/19
8083/8083 [==============================] - 11s - loss: 0.2445 - acc: 0.9428 - val_loss: 0.9054 - val_acc: 0.8154
Epoch 6/19
8083/8083 [==============================] - 10s - loss: 0.2015 - acc: 0.9501 - val_loss: 0.9264 - val_acc: 0.8131
Epoch 7/19
8083/8083 [==============================] - 9s - loss: 0.1792 - acc: 0.9537 - val_loss: 0.9350 - val_acc: 0.8154
Epoch 8/19
8083/8083 [==============================] - 9s - loss: 0.1614 - acc: 0.9560 - val_loss: 0.9480 - val_acc: 0.8142
Epoch 9/19
8083/8083 [==============================] - 8s - loss: 0.1529 - acc: 0.9548 - val_loss: 1.0022 - val_acc: 0.8087
Epoch 10/19
8083/8083 [==============================] - 9s - loss: 0.1454 - acc: 0.9569 - val_loss: 0.9674 - val_acc: 0.8154
Epoch 11/19
8083/8083 [==============================] - 8s - loss: 0.1396 - acc: 0.9579 - val_loss: 0.9752 - val_acc: 0.8187
Epoch 12/19
8083/8083 [==============================] - 8s - loss: 0.1336 - acc: 0.9571 - val_loss: 0.9783 - val_acc: 0.8053
Epoch 13/19
8064/8083 [============================>.] - ETA: 0s - loss: 0.1286 - acc: 0.9594_______Stopping after 120 seconds.
8083/8083 [==============================] - 9s - loss: 0.1285 - acc: 0.9594 - val_loss: 0.9841 - val_acc: 0.8098
2176/2246 [============================>.] - ETA: 0sin the else
this is the index:  7
and this is the gene:  LR                                                     0.0539181
activations    [softplus, hard_sigmoid, softplus, softplus, h...
batch_size                                                    32
epochs                                                        19
gene_name                            lab3000_n1e1p1b2+Gen2+gene7
layer_units          [252, 481, 512, 323, 85, 25, 415, 351, 123]
model_name                  lab3000_n1e1p1b2+Gen2+gene7+model.h5
nb_layers                                                      9
optimizer                                                RMSProp
Name: 7, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/19
8083/8083 [==============================] - 29s - loss: 2.4875 - acc: 0.3292 - val_loss: 2.4339 - val_acc: 0.3537
Epoch 2/19
8083/8083 [==============================] - 25s - loss: 2.4255 - acc: 0.3478 - val_loss: 2.4296 - val_acc: 0.3537
Epoch 3/19
8083/8083 [==============================] - 26s - loss: 2.4223 - acc: 0.3515 - val_loss: 2.4167 - val_acc: 0.3537
Epoch 4/19
8083/8083 [==============================] - 26s - loss: 2.4167 - acc: 0.3515 - val_loss: 2.4254 - val_acc: 0.3537
Epoch 5/19
8064/8083 [============================>.] - ETA: 0s - loss: 2.4163 - acc: 0.3512_______Stopping after 120 seconds.
8083/8083 [==============================] - 24s - loss: 2.4157 - acc: 0.3515 - val_loss: 2.4146 - val_acc: 0.3537
2246/2246 [==============================] - 4s     
in the else
this is the index:  8
and this is the gene:  LR                                       0.00263484
activations                              [softsign]
batch_size                                      128
epochs                                            5
gene_name               lab3000_n1e1p1b2+Gen2+gene8
layer_units                                   [287]
model_name     lab3000_n1e1p1b2+Gen2+gene8+model.h5
nb_layers                                         1
optimizer                                      Adam
Name: 8, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/5
8083/8083 [==============================] - 12s - loss: 1.5243 - acc: 0.6802 - val_loss: 0.9816 - val_acc: 0.7909
Epoch 2/5
8083/8083 [==============================] - 8s - loss: 0.5939 - acc: 0.8786 - val_loss: 0.8040 - val_acc: 0.8343
Epoch 3/5
8083/8083 [==============================] - 8s - loss: 0.3257 - acc: 0.9334 - val_loss: 0.7925 - val_acc: 0.8298
Epoch 4/5
8083/8083 [==============================] - 8s - loss: 0.2212 - acc: 0.9478 - val_loss: 0.7943 - val_acc: 0.8331
Epoch 5/5
8083/8083 [==============================] - 8s - loss: 0.1695 - acc: 0.9524 - val_loss: 0.8144 - val_acc: 0.8220
2176/2246 [============================>.] - ETA: 0sin the else
this is the index:  9
and this is the gene:  LR                                       0.00263484
activations      [softplus, hard_sigmoid, softplus]
batch_size                                       32
epochs                                           19
gene_name               lab3000_n1e1p1b2+Gen2+gene9
layer_units                         [345, 345, 276]
model_name     lab3000_n1e1p1b2+Gen2+gene9+model.h5
nb_layers                                         3
optimizer                                      Adam
Name: 9, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/19
8083/8083 [==============================] - 33s - loss: 1.6400 - acc: 0.6152 - val_loss: 1.2161 - val_acc: 0.7119
Epoch 2/19
8083/8083 [==============================] - 29s - loss: 0.8828 - acc: 0.7997 - val_loss: 0.9815 - val_acc: 0.7798
Epoch 3/19
8083/8083 [==============================] - 29s - loss: 0.5148 - acc: 0.8750 - val_loss: 0.9855 - val_acc: 0.7976
Epoch 4/19
8064/8083 [============================>.] - ETA: 0s - loss: 0.3207 - acc: 0.9184_______Stopping after 120 seconds.
8083/8083 [==============================] - 29s - loss: 0.3209 - acc: 0.9183 - val_loss: 1.0003 - val_acc: 0.7931
2208/2246 [============================>.] - ETA: 0sin the else
this is the index:  10
and this is the gene:  LR                                         0.0539181
activations       [softplus, hard_sigmoid, softplus]
batch_size                                       128
epochs                                             5
gene_name               lab3000_n1e1p1b2+Gen2+gene10
layer_units                              [287, 2, 2]
model_name     lab3000_n1e1p1b2+Gen2+gene10+model.h5
nb_layers                                          3
optimizer                                       Adam
Name: 10, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/5
8083/8083 [==============================] - 12s - loss: 3.6922 - acc: 0.0294 - val_loss: 3.5443 - val_acc: 0.0478
Epoch 2/5
8083/8083 [==============================] - 8s - loss: 3.3996 - acc: 0.2135 - val_loss: 3.2630 - val_acc: 0.2191
Epoch 3/5
8083/8083 [==============================] - 8s - loss: 3.1136 - acc: 0.2168 - val_loss: 2.9783 - val_acc: 0.2191
Epoch 4/5
8083/8083 [==============================] - 9s - loss: 2.8317 - acc: 0.2168 - val_loss: 2.7130 - val_acc: 0.2191
Epoch 5/5
8083/8083 [==============================] - 8s - loss: 2.5888 - acc: 0.2889 - val_loss: 2.5052 - val_acc: 0.3537
2240/2246 [============================>.] - ETA: 0sin the else
this is the index:  11
and this is the gene:  LR                                         0.0138704
activations            [softplus, hard_sigmoid, elu]
batch_size                                       128
epochs                                            16
gene_name               lab3000_n1e1p1b2+Gen2+gene11
layer_units                               [99, 2, 2]
model_name     lab3000_n1e1p1b2+Gen2+gene11+model.h5
nb_layers                                          3
optimizer                                     Adamax
Name: 11, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/16
8083/8083 [==============================] - 9s - loss: 3.6122 - acc: 0.0428 - val_loss: 3.4416 - val_acc: 0.0445
Epoch 2/16
8083/8083 [==============================] - 4s - loss: 3.2848 - acc: 0.2060 - val_loss: 3.1209 - val_acc: 0.3537
Epoch 3/16
8083/8083 [==============================] - 4s - loss: 2.9685 - acc: 0.3515 - val_loss: 2.8235 - val_acc: 0.3537
Epoch 4/16
8083/8083 [==============================] - 4s - loss: 2.6918 - acc: 0.3515 - val_loss: 2.5802 - val_acc: 0.3537
Epoch 5/16
8083/8083 [==============================] - 4s - loss: 2.4763 - acc: 0.3515 - val_loss: 2.4024 - val_acc: 0.3537
Epoch 6/16
8083/8083 [==============================] - 4s - loss: 2.3286 - acc: 0.3515 - val_loss: 2.2872 - val_acc: 0.3537
Epoch 7/16
8083/8083 [==============================] - 3s - loss: 2.2362 - acc: 0.3515 - val_loss: 2.2127 - val_acc: 0.3537
Epoch 8/16
8083/8083 [==============================] - 3s - loss: 2.1782 - acc: 0.3515 - val_loss: 2.1657 - val_acc: 0.3537
Epoch 9/16
8083/8083 [==============================] - 3s - loss: 2.1382 - acc: 0.3515 - val_loss: 2.1324 - val_acc: 0.3537
Epoch 10/16
8083/8083 [==============================] - 3s - loss: 2.1084 - acc: 0.3515 - val_loss: 2.1090 - val_acc: 0.3537
Epoch 11/16
8083/8083 [==============================] - 3s - loss: 2.0839 - acc: 0.3515 - val_loss: 2.0903 - val_acc: 0.3537
Epoch 12/16
8083/8083 [==============================] - 4s - loss: 2.0625 - acc: 0.3515 - val_loss: 2.0747 - val_acc: 0.3537
Epoch 13/16
8083/8083 [==============================] - 4s - loss: 2.0431 - acc: 0.3515 - val_loss: 2.0590 - val_acc: 0.3537
Epoch 14/16
8083/8083 [==============================] - 4s - loss: 2.0255 - acc: 0.3515 - val_loss: 2.0476 - val_acc: 0.3537
Epoch 15/16
8083/8083 [==============================] - 4s - loss: 2.0099 - acc: 0.3515 - val_loss: 2.0374 - val_acc: 0.3537
Epoch 16/16
8083/8083 [==============================] - 4s - loss: 1.9948 - acc: 0.3515 - val_loss: 2.0218 - val_acc: 0.3537
2176/2246 [============================>.] - ETA: 0sin the else
this is the index:  12
and this is the gene:  LR                                        0.00263484
activations                               [softsign]
batch_size                                        64
epochs                                             5
gene_name               lab3000_n1e1p1b2+Gen2+gene12
layer_units                                     [99]
model_name     lab3000_n1e1p1b2+Gen2+gene12+model.h5
nb_layers                                          1
optimizer                                      Nadam
Name: 12, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/5
8083/8083 [==============================] - 11s - loss: 1.3440 - acc: 0.7184 - val_loss: 0.8778 - val_acc: 0.8187
Epoch 2/5
8083/8083 [==============================] - 7s - loss: 0.4829 - acc: 0.9025 - val_loss: 0.7850 - val_acc: 0.8309
Epoch 3/5
8083/8083 [==============================] - 7s - loss: 0.2523 - acc: 0.9405 - val_loss: 0.7859 - val_acc: 0.8298
Epoch 4/5
8083/8083 [==============================] - 7s - loss: 0.1746 - acc: 0.9493 - val_loss: 0.8293 - val_acc: 0.8176
Epoch 5/5
8083/8083 [==============================] - 7s - loss: 0.1391 - acc: 0.9529 - val_loss: 0.8555 - val_acc: 0.8142
2112/2246 [===========================>..] - ETA: 0sin the else
this is the index:  13
and this is the gene:  LR                                        0.00263484
activations                               [softplus]
batch_size                                         8
epochs                                             5
gene_name               lab3000_n1e1p1b2+Gen2+gene13
layer_units                                    [287]
model_name     lab3000_n1e1p1b2+Gen2+gene13+model.h5
nb_layers                                          1
optimizer                                       Adam
Name: 13, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/5
8083/8083 [==============================] - 95s - loss: 1.1380 - acc: 0.7506 - val_loss: 0.7769 - val_acc: 0.8387
Epoch 2/5
8080/8083 [============================>.] - ETA: 0s - loss: 0.3751 - acc: 0.9132_______Stopping after 120 seconds.
8083/8083 [==============================] - 96s - loss: 0.3751 - acc: 0.9132 - val_loss: 0.8755 - val_acc: 0.8109
2208/2246 [============================>.] - ETA: 0sin the else
this is the index:  14
and this is the gene:  LR                                        0.00269799
activations                                    [elu]
batch_size                                       512
epochs                                             9
gene_name               lab3000_n1e1p1b2+Gen2+gene14
layer_units                                    [497]
model_name     lab3000_n1e1p1b2+Gen2+gene14+model.h5
nb_layers                                          1
optimizer                                       Adam
Name: 14, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/9
8083/8083 [==============================] - 14s - loss: 2.0266 - acc: 0.5993 - val_loss: 1.2484 - val_acc: 0.7175
Epoch 2/9
8083/8083 [==============================] - 8s - loss: 0.8208 - acc: 0.8261 - val_loss: 0.9652 - val_acc: 0.8120
Epoch 3/9
8083/8083 [==============================] - 8s - loss: 0.4794 - acc: 0.9047 - val_loss: 0.8548 - val_acc: 0.8198
Epoch 4/9
8083/8083 [==============================] - 7s - loss: 0.3160 - acc: 0.9339 - val_loss: 0.8366 - val_acc: 0.8287
Epoch 5/9
8083/8083 [==============================] - 7s - loss: 0.2258 - acc: 0.9475 - val_loss: 0.8390 - val_acc: 0.8242
Epoch 6/9
8083/8083 [==============================] - 8s - loss: 0.1800 - acc: 0.9530 - val_loss: 0.8615 - val_acc: 0.8187
Epoch 7/9
8083/8083 [==============================] - 7s - loss: 0.1455 - acc: 0.9565 - val_loss: 0.8796 - val_acc: 0.8220
Epoch 8/9
8083/8083 [==============================] - 7s - loss: 0.1319 - acc: 0.9582 - val_loss: 0.8983 - val_acc: 0.8131
Epoch 9/9
8083/8083 [==============================] - 7s - loss: 0.1163 - acc: 0.9576 - val_loss: 0.9212 - val_acc: 0.8098
2240/2246 [============================>.] - ETA: 0sin the else
this is the index:  15
and this is the gene:  LR                                        0.00263484
activations                               [softplus]
batch_size                                         8
epochs                                             5
gene_name               lab3000_n1e1p1b2+Gen2+gene15
layer_units                                    [287]
model_name     lab3000_n1e1p1b2+Gen2+gene15+model.h5
nb_layers                                          1
optimizer                                       Adam
Name: 15, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/5
8083/8083 [==============================] - 119s - loss: 1.1341 - acc: 0.7532 - val_loss: 0.8329 - val_acc: 0.8198
Epoch 2/5
8080/8083 [============================>.] - ETA: 0s - loss: 0.3706 - acc: 0.9156_______Stopping after 120 seconds.
8083/8083 [==============================] - 102s - loss: 0.3705 - acc: 0.9156 - val_loss: 0.9110 - val_acc: 0.8098
2208/2246 [============================>.] - ETA: 0sin the else
this is the index:  16
and this is the gene:  LR                                        0.00263484
activations                               [softplus]
batch_size                                       128
epochs                                             5
gene_name               lab3000_n1e1p1b2+Gen2+gene16
layer_units                                    [287]
model_name     lab3000_n1e1p1b2+Gen2+gene16+model.h5
nb_layers                                          1
optimizer                                       Adam
Name: 16, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/5
8083/8083 [==============================] - 15s - loss: 1.5780 - acc: 0.6369 - val_loss: 1.1447 - val_acc: 0.7453
Epoch 2/5
8083/8083 [==============================] - 11s - loss: 0.7545 - acc: 0.8332 - val_loss: 0.9442 - val_acc: 0.8042
Epoch 3/5
8083/8083 [==============================] - 9s - loss: 0.4459 - acc: 0.9050 - val_loss: 0.8648 - val_acc: 0.8198
Epoch 4/5
8083/8083 [==============================] - 11s - loss: 0.3032 - acc: 0.9349 - val_loss: 0.8659 - val_acc: 0.8287
Epoch 5/5
8083/8083 [==============================] - 10s - loss: 0.2432 - acc: 0.9443 - val_loss: 0.8801 - val_acc: 0.8209
2240/2246 [============================>.] - ETA: 0sin the else
this is the index:  17
and this is the gene:  LR                                         0.0117768
activations               [hard_sigmoid, relu, tanh]
batch_size                                       512
epochs                                             5
gene_name               lab3000_n1e1p1b2+Gen2+gene17
layer_units                           [416, 89, 497]
model_name     lab3000_n1e1p1b2+Gen2+gene17+model.h5
nb_layers                                          3
optimizer                                        sgd
Name: 17, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/5
8083/8083 [==============================] - 11s - loss: 3.2259 - acc: 0.2391 - val_loss: 2.7129 - val_acc: 0.3537
Epoch 2/5
8083/8083 [==============================] - 6s - loss: 2.6230 - acc: 0.3515 - val_loss: 2.5545 - val_acc: 0.3537
Epoch 3/5
8083/8083 [==============================] - 6s - loss: 2.5151 - acc: 0.3515 - val_loss: 2.4850 - val_acc: 0.3537
Epoch 4/5
8083/8083 [==============================] - 7s - loss: 2.4595 - acc: 0.3515 - val_loss: 2.4507 - val_acc: 0.3537
Epoch 5/5
8083/8083 [==============================] - 6s - loss: 2.4303 - acc: 0.3515 - val_loss: 2.4312 - val_acc: 0.3537
2240/2246 [============================>.] - ETA: 0sin the else
this is the index:  18
and this is the gene:  LR                                                     0.0117768
activations    [tanh, softsign, softsign, softmax, sigmoid, r...
batch_size                                                   128
epochs                                                         5
gene_name                           lab3000_n1e1p1b2+Gen2+gene18
layer_units                        [287, 2, 2, 2, 2, 2, 2, 2, 2]
model_name                 lab3000_n1e1p1b2+Gen2+gene18+model.h5
nb_layers                                                      9
optimizer                                                RMSProp
Name: 18, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/5
8083/8083 [==============================] - 12s - loss: 3.7409 - acc: 0.0432 - val_loss: 3.6465 - val_acc: 0.0578
Epoch 2/5
8083/8083 [==============================] - 8s - loss: 3.5397 - acc: 0.0615 - val_loss: 3.4277 - val_acc: 0.0578
Epoch 3/5
8083/8083 [==============================] - 8s - loss: 3.3135 - acc: 0.1339 - val_loss: 3.2055 - val_acc: 0.2191
Epoch 4/5
8083/8083 [==============================] - 8s - loss: 3.1030 - acc: 0.2168 - val_loss: 3.0131 - val_acc: 0.2191
Epoch 5/5
8083/8083 [==============================] - 9s - loss: 2.9255 - acc: 0.2168 - val_loss: 2.8545 - val_acc: 0.2191
2176/2246 [============================>.] - ETA: 0sin the else
this is the index:  19
and this is the gene:  LR                                                     0.0117768
activations    [softplus, hard_sigmoid, elu, softplus, softpl...
batch_size                                                   512
epochs                                                         9
gene_name                           lab3000_n1e1p1b2+Gen2+gene19
layer_units                     [416, 89, 497, 2, 2, 2, 2, 2, 2]
model_name                 lab3000_n1e1p1b2+Gen2+gene19+model.h5
nb_layers                                                      9
optimizer                                                    sgd
Name: 19, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/9
8083/8083 [==============================] - 11s - loss: 3.7853 - acc: 0.0108 - val_loss: 3.7711 - val_acc: 0.0056
Epoch 2/9
8083/8083 [==============================] - 7s - loss: 3.7508 - acc: 0.0108 - val_loss: 3.7366 - val_acc: 0.0056
Epoch 3/9
8083/8083 [==============================] - 7s - loss: 3.7166 - acc: 0.0580 - val_loss: 3.7024 - val_acc: 0.2191
Epoch 4/9
8083/8083 [==============================] - 7s - loss: 3.6826 - acc: 0.2168 - val_loss: 3.6683 - val_acc: 0.2191
Epoch 5/9
8083/8083 [==============================] - 8s - loss: 3.6488 - acc: 0.2236 - val_loss: 3.6345 - val_acc: 0.3537
Epoch 6/9
8083/8083 [==============================] - 6s - loss: 3.6152 - acc: 0.3515 - val_loss: 3.6010 - val_acc: 0.3537
Epoch 7/9
8083/8083 [==============================] - 6s - loss: 3.5819 - acc: 0.3515 - val_loss: 3.5677 - val_acc: 0.3537
Epoch 8/9
8083/8083 [==============================] - 7s - loss: 3.5489 - acc: 0.3515 - val_loss: 3.5346 - val_acc: 0.3537
Epoch 9/9
8083/8083 [==============================] - 5s - loss: 3.5160 - acc: 0.3515 - val_loss: 3.5017 - val_acc: 0.3537
2240/2246 [============================>.] - ETA: 0sin the else
this is the index:  20
and this is the gene:  LR                                         0.0117768
activations                 [softsign, linear, tanh]
batch_size                                       512
epochs                                             5
gene_name               lab3000_n1e1p1b2+Gen2+gene20
layer_units                           [512, 323, 25]
model_name     lab3000_n1e1p1b2+Gen2+gene20+model.h5
nb_layers                                          3
optimizer                                    RMSProp
Name: 20, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/5
8083/8083 [==============================] - 15s - loss: 2.1213 - acc: 0.6051 - val_loss: 1.5789 - val_acc: 0.7175
Epoch 2/5
8083/8083 [==============================] - 11s - loss: 1.2720 - acc: 0.8035 - val_loss: 1.2838 - val_acc: 0.7764
Epoch 3/5
8083/8083 [==============================] - 9s - loss: 0.9466 - acc: 0.8702 - val_loss: 1.1357 - val_acc: 0.8020
Epoch 4/5
8083/8083 [==============================] - 8s - loss: 0.7367 - acc: 0.9072 - val_loss: 1.0918 - val_acc: 0.8087
Epoch 5/5
8083/8083 [==============================] - 8s - loss: 0.5930 - acc: 0.9258 - val_loss: 1.0373 - val_acc: 0.7931
2246/2246 [==============================] - 6s     
in the else
this is the index:  21
and this is the gene:  LR                                        0.00269799
activations            [softplus, hard_sigmoid, elu]
batch_size                                       128
epochs                                             5
gene_name               lab3000_n1e1p1b2+Gen2+gene21
layer_units                           [416, 89, 497]
model_name     lab3000_n1e1p1b2+Gen2+gene21+model.h5
nb_layers                                          3
optimizer                                        sgd
Name: 21, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/5
8083/8083 [==============================] - 13s - loss: 2.6645 - acc: 0.3396 - val_loss: 2.4641 - val_acc: 0.3537
Epoch 2/5
8083/8083 [==============================] - 9s - loss: 2.4270 - acc: 0.3515 - val_loss: 2.4235 - val_acc: 0.3537
Epoch 3/5
8083/8083 [==============================] - 11s - loss: 2.4036 - acc: 0.3515 - val_loss: 2.4108 - val_acc: 0.3537
Epoch 4/5
8083/8083 [==============================] - 9s - loss: 2.3939 - acc: 0.3515 - val_loss: 2.4093 - val_acc: 0.3537
Epoch 5/5
8083/8083 [==============================] - 11s - loss: 2.3845 - acc: 0.3515 - val_loss: 2.3851 - val_acc: 0.3537
2208/2246 [============================>.] - ETA: 0sin the else
this is the index:  22
and this is the gene:  LR                                         0.0138704
activations            [softplus, hard_sigmoid, elu]
batch_size                                       128
epochs                                             6
gene_name               lab3000_n1e1p1b2+Gen2+gene22
layer_units                           [416, 89, 497]
model_name     lab3000_n1e1p1b2+Gen2+gene22+model.h5
nb_layers                                          3
optimizer                                     Adamax
Name: 22, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/6
8083/8083 [==============================] - 18s - loss: 1.9079 - acc: 0.5239 - val_loss: 1.4802 - val_acc: 0.6618
Epoch 2/6
8083/8083 [==============================] - 13s - loss: 1.2298 - acc: 0.7161 - val_loss: 1.1752 - val_acc: 0.7097
Epoch 3/6
8083/8083 [==============================] - 13s - loss: 0.9431 - acc: 0.7783 - val_loss: 1.0453 - val_acc: 0.7642
Epoch 4/6
8083/8083 [==============================] - 13s - loss: 0.7455 - acc: 0.8253 - val_loss: 0.9559 - val_acc: 0.7909
Epoch 5/6
8083/8083 [==============================] - 12s - loss: 0.5912 - acc: 0.8591 - val_loss: 0.9294 - val_acc: 0.8042
Epoch 6/6
8083/8083 [==============================] - 12s - loss: 0.4732 - acc: 0.8863 - val_loss: 0.9039 - val_acc: 0.8031
2208/2246 [============================>.] - ETA: 0sin the else
this is the index:  23
and this is the gene:  LR                                        0.00263484
activations       [softplus, hard_sigmoid, softplus]
batch_size                                        32
epochs                                             5
gene_name               lab3000_n1e1p1b2+Gen2+gene23
layer_units                              [384, 2, 2]
model_name     lab3000_n1e1p1b2+Gen2+gene23+model.h5
nb_layers                                          3
optimizer                                       Adam
Name: 23, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/5
8083/8083 [==============================] - 36s - loss: 3.4825 - acc: 0.0933 - val_loss: 3.1649 - val_acc: 0.2191
Epoch 2/5
8083/8083 [==============================] - 34s - loss: 2.8076 - acc: 0.2166 - val_loss: 2.4854 - val_acc: 0.2180
Epoch 3/5
8083/8083 [==============================] - 33s - loss: 2.3255 - acc: 0.3390 - val_loss: 2.1985 - val_acc: 0.3537
Epoch 4/5
8064/8083 [============================>.] - ETA: 0s - loss: 2.1331 - acc: 0.3516_______Stopping after 120 seconds.
8083/8083 [==============================] - 33s - loss: 2.1328 - acc: 0.3515 - val_loss: 2.0917 - val_acc: 0.3537
2246/2246 [==============================] - 5s     
in the else
this is the index:  24
and this is the gene:  LR                                         0.0138704
activations           [softsign, softsign, softsign]
batch_size                                       128
epochs                                             5
gene_name               lab3000_n1e1p1b2+Gen2+gene24
layer_units                               [99, 2, 2]
model_name     lab3000_n1e1p1b2+Gen2+gene24+model.h5
nb_layers                                          3
optimizer                                       Adam
Name: 24, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/5
8083/8083 [==============================] - 10s - loss: 3.6907 - acc: 0.3599 - val_loss: 3.6126 - val_acc: 0.4360
Epoch 2/5
8083/8083 [==============================] - 5s - loss: 3.5261 - acc: 0.4532 - val_loss: 3.4506 - val_acc: 0.4149
Epoch 3/5
8083/8083 [==============================] - 5s - loss: 3.3503 - acc: 0.4208 - val_loss: 3.2747 - val_acc: 0.4171
Epoch 4/5
8083/8083 [==============================] - 4s - loss: 3.1663 - acc: 0.4277 - val_loss: 3.0994 - val_acc: 0.4216
Epoch 5/5
8083/8083 [==============================] - 4s - loss: 2.9871 - acc: 0.4389 - val_loss: 2.9318 - val_acc: 0.4305
2208/2246 [============================>.] - ETA: 0sin the else
this is the index:  25
and this is the gene:  LR                                        0.00263484
activations                               [softsign]
batch_size                                         8
epochs                                             5
gene_name               lab3000_n1e1p1b2+Gen2+gene25
layer_units                                     [99]
model_name     lab3000_n1e1p1b2+Gen2+gene25+model.h5
nb_layers                                          1
optimizer                                       Adam
Name: 25, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/5
8083/8083 [==============================] - 46s - loss: 1.1243 - acc: 0.7565 - val_loss: 0.7822 - val_acc: 0.8320
Epoch 2/5
8083/8083 [==============================] - 41s - loss: 0.3832 - acc: 0.9164 - val_loss: 0.7750 - val_acc: 0.8354
Epoch 3/5
8080/8083 [============================>.] - ETA: 0s - loss: 0.2235 - acc: 0.9467_______Stopping after 120 seconds.
8083/8083 [==============================] - 40s - loss: 0.2235 - acc: 0.9467 - val_loss: 0.8182 - val_acc: 0.8209
2208/2246 [============================>.] - ETA: 0sin the else
this is the index:  26
and this is the gene:  LR                                         0.0117768
activations                               [softsign]
batch_size                                         8
epochs                                             5
gene_name               lab3000_n1e1p1b2+Gen2+gene26
layer_units                                     [99]
model_name     lab3000_n1e1p1b2+Gen2+gene26+model.h5
nb_layers                                          1
optimizer                                    RMSProp
Name: 26, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/5
8083/8083 [==============================] - 52s - loss: 1.1741 - acc: 0.7433 - val_loss: 0.9036 - val_acc: 0.8131
Epoch 2/5
8083/8083 [==============================] - 45s - loss: 0.6300 - acc: 0.8656 - val_loss: 0.8040 - val_acc: 0.8331
Epoch 3/5
8080/8083 [============================>.] - ETA: 0s - loss: 0.4637 - acc: 0.9004_______Stopping after 120 seconds.
8083/8083 [==============================] - 44s - loss: 0.4637 - acc: 0.9003 - val_loss: 0.8054 - val_acc: 0.8242
2176/2246 [============================>.] - ETA: 0sin the else
this is the index:  27
and this is the gene:  LR                                        0.00263484
activations                               [softsign]
batch_size                                         8
epochs                                             9
gene_name               lab3000_n1e1p1b2+Gen2+gene27
layer_units                                     [99]
model_name     lab3000_n1e1p1b2+Gen2+gene27+model.h5
nb_layers                                          1
optimizer                                        sgd
Name: 27, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/9
8083/8083 [==============================] - 39s - loss: 1.9690 - acc: 0.5473 - val_loss: 1.6048 - val_acc: 0.6307
Epoch 2/9
8083/8083 [==============================] - 28s - loss: 1.4281 - acc: 0.6871 - val_loss: 1.3734 - val_acc: 0.6952
Epoch 3/9
8083/8083 [==============================] - 29s - loss: 1.2287 - acc: 0.7255 - val_loss: 1.2431 - val_acc: 0.7130
Epoch 4/9
8080/8083 [============================>.] - ETA: 0s - loss: 1.0948 - acc: 0.7541_______Stopping after 120 seconds.
8083/8083 [==============================] - 29s - loss: 1.0950 - acc: 0.7541 - val_loss: 1.1617 - val_acc: 0.7319
2240/2246 [============================>.] - ETA: 0sin the else
this is the index:  28
and this is the gene:  LR                                         0.0138704
activations             [softsign, softsign, linear]
batch_size                                         8
epochs                                             5
gene_name               lab3000_n1e1p1b2+Gen2+gene28
layer_units                           [416, 89, 497]
model_name     lab3000_n1e1p1b2+Gen2+gene28+model.h5
nb_layers                                          3
optimizer                                       Adam
Name: 28, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/5
8080/8083 [============================>.] - ETA: 0s - loss: 1.0818 - acc: 0.7512_______Stopping after 120 seconds.
8083/8083 [==============================] - 148s - loss: 1.0819 - acc: 0.7511 - val_loss: 0.8437 - val_acc: 0.8009
2240/2246 [============================>.] - ETA: 0sin the else
this is the index:  29
and this is the gene:  LR                                                    0.00269799
activations    [tanh, softsign, softsign, softmax, sigmoid, r...
batch_size                                                   512
epochs                                                         9
gene_name                           lab3000_n1e1p1b2+Gen2+gene29
layer_units          [252, 481, 512, 323, 85, 25, 415, 351, 123]
model_name                 lab3000_n1e1p1b2+Gen2+gene29+model.h5
nb_layers                                                      9
optimizer                                                    sgd
Name: 29, dtype: object
Train on 8083 samples, validate on 899 samples
Epoch 1/9
8083/8083 [==============================] - 12s - loss: 3.2584 - acc: 0.2794 - val_loss: 2.7795 - val_acc: 0.3537
Epoch 2/9
8083/8083 [==============================] - 7s - loss: 2.6770 - acc: 0.3515 - val_loss: 2.6095 - val_acc: 0.3537
Epoch 3/9
8083/8083 [==============================] - 8s - loss: 2.5802 - acc: 0.3515 - val_loss: 2.5534 - val_acc: 0.3537
Epoch 4/9
8083/8083 [==============================] - 6s - loss: 2.5299 - acc: 0.3515 - val_loss: 2.5172 - val_acc: 0.3537
Epoch 5/9
8083/8083 [==============================] - 6s - loss: 2.4966 - acc: 0.3515 - val_loss: 2.4925 - val_acc: 0.3537
Epoch 6/9
8083/8083 [==============================] - 6s - loss: 2.4735 - acc: 0.3515 - val_loss: 2.4748 - val_acc: 0.3537
Epoch 7/9
8083/8083 [==============================] - 6s - loss: 2.4577 - acc: 0.3515 - val_loss: 2.4622 - val_acc: 0.3537
Epoch 8/9
8083/8083 [==============================] - 6s - loss: 2.4459 - acc: 0.3515 - val_loss: 2.4530 - val_acc: 0.3537
Epoch 9/9
8083/8083 [==============================] - 6s - loss: 2.4379 - acc: 0.3515 - val_loss: 2.4455 - val_acc: 0.3537
2246/2246 [==============================] - 5s     
in the else

In [ ]: