Face Generation

In this project, you'll use generative adversarial networks to generate new images of faces.

Get the Data

You'll be using two datasets in this project:

  • MNIST
  • CelebA

Since the celebA dataset is complex and you're doing GANs in a project for the first time, we want you to test your neural network on MNIST before CelebA. Running the GANs on MNIST will allow you to see how well your model trains sooner.

If you're using FloydHub, set data_dir to "/input" and use the FloydHub data ID "R5KrjnANiKVhLWAkpXhNBe".


In [1]:
data_dir = './data'

# FloydHub - Use with data ID "R5KrjnANiKVhLWAkpXhNBe"
#data_dir = '/input'


"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
import helper

helper.download_extract('mnist', data_dir)
helper.download_extract('celeba', data_dir)


Found mnist Data
Found celeba Data

Explore the Data

MNIST

As you're aware, the MNIST dataset contains images of handwritten digits. You can view the first number of examples by changing show_n_images.


In [2]:
show_n_images = 25

"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
%matplotlib inline
import os
from glob import glob
from matplotlib import pyplot

mnist_images = helper.get_batch(glob(os.path.join(data_dir, 'mnist/*.jpg'))[:show_n_images], 28, 28, 'L')
pyplot.imshow(helper.images_square_grid(mnist_images, 'L'), cmap='gray')


Out[2]:
<matplotlib.image.AxesImage at 0x7fdf95cfa470>

CelebA

The CelebFaces Attributes Dataset (CelebA) dataset contains over 200,000 celebrity images with annotations. Since you're going to be generating faces, you won't need the annotations. You can view the first number of examples by changing show_n_images.


In [3]:
show_n_images = 25

"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
mnist_images = helper.get_batch(glob(os.path.join(data_dir, 'img_align_celeba/*.jpg'))[:show_n_images], 28, 28, 'RGB')
pyplot.imshow(helper.images_square_grid(mnist_images, 'RGB'))


Out[3]:
<matplotlib.image.AxesImage at 0x7fdf95c26080>

Preprocess the Data

Since the project's main focus is on building the GANs, we'll preprocess the data for you. The values of the MNIST and CelebA dataset will be in the range of -0.5 to 0.5 of 28x28 dimensional images. The CelebA images will be cropped to remove parts of the image that don't include a face, then resized down to 28x28.

The MNIST images are black and white images with a single color channel while the CelebA images have 3 color channels (RGB color channel).

Build the Neural Network

You'll build the components necessary to build a GANs by implementing the following functions below:

  • model_inputs
  • discriminator
  • generator
  • model_loss
  • model_opt
  • train

Check the Version of TensorFlow and Access to GPU

This will check to make sure you have the correct version of TensorFlow and access to a GPU


In [4]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
from distutils.version import LooseVersion
import warnings
import tensorflow as tf

# Check TensorFlow Version
assert LooseVersion(tf.__version__) >= LooseVersion('1.0'), 'Please use TensorFlow version 1.0 or newer.  You are using {}'.format(tf.__version__)
print('TensorFlow Version: {}'.format(tf.__version__))

# Check for a GPU
if not tf.test.gpu_device_name():
    warnings.warn('No GPU found. Please use a GPU to train your neural network.')
else:
    print('Default GPU Device: {}'.format(tf.test.gpu_device_name()))


TensorFlow Version: 1.0.0
Default GPU Device: /gpu:0

Input

Implement the model_inputs function to create TF Placeholders for the Neural Network. It should create the following placeholders:

  • Real input images placeholder with rank 4 using image_width, image_height, and image_channels.
  • Z input placeholder with rank 2 using z_dim.
  • Learning rate placeholder with rank 0.

Return the placeholders in the following the tuple (tensor of real input images, tensor of z data)


In [5]:
import problem_unittests as tests

def model_inputs(image_width, image_height, image_channels, z_dim):
    """
    Create the model inputs
    :param image_width: The input image width
    :param image_height: The input image height
    :param image_channels: The number of image channels
    :param z_dim: The dimension of Z
    :return: Tuple of (tensor of real input images, tensor of z data, learning rate)
    """
    # TODO: Implement Function
    # Here we create placeholders for real input images (inputs_real), tenzor of z data (inputs_z) and learning rate(lr)
    inputs_real = tf.placeholder(tf.float32, 
                                 shape=[None,image_width, image_height,image_channels], 
                                 name='input_real')
    inputs_z = tf.placeholder(tf.float32, (None, z_dim), name='input_z')
    
    lr = tf.placeholder(tf.float32)
    
    return inputs_real, inputs_z, lr


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_inputs(model_inputs)


Tests Passed

Discriminator

Implement discriminator to create a discriminator neural network that discriminates on images. This function should be able to reuse the variabes in the neural network. Use tf.variable_scope with a scope name of "discriminator" to allow the variables to be reused. The function should return a tuple of (tensor output of the generator, tensor logits of the generator).


In [16]:
#declare global var alpha with default value (then we can modify it during hyperparameters tuning)
#we need it to use leak relu
alpha =0.1

def discriminator(images, reuse=False):
    """
    Create the discriminator network
    :param image: Tensor of input image(s)
    :param reuse: Boolean if the weights should be reused
    :return: Tuple of (tensor output of the discriminator, tensor logits of the discriminator)
    """
    # TODO: Implement Function
    with tf.variable_scope('discriminator', reuse=reuse):
        # Input layer is 28x28x1/3
        x1 = tf.layers.conv2d(images, 56, 5, strides=2, padding='same',
                             kernel_initializer = tf.random_normal_initializer(mean = 0, stddev = 0.02))
        relu1 = tf.maximum(alpha * x1, x1)
        # 14x14x32
        
        x2 = tf.layers.conv2d(relu1, 112, 5, strides=2, padding='same',
                             kernel_initializer = tf.random_normal_initializer(mean = 0, stddev = 0.02))
        bn2 = tf.layers.batch_normalization(x2, training=True)
        relu2 = tf.maximum(alpha * bn2, bn2)
        # 7x7x128
        
        x3 = tf.layers.conv2d(relu2, 224, 5, strides=2, padding='same',
                             kernel_initializer = tf.random_normal_initializer(mean = 0, stddev = 0.02))
        bn3 = tf.layers.batch_normalization(x3, training=True)
        relu3 = tf.maximum(alpha * bn3, bn3)
        # 4x4x256
        

        # Flatten it
        flat = tf.contrib.layers.flatten(relu3)
        logits = tf.layers.dense(flat, 1)
        out = tf.sigmoid(logits)
    
    return out, logits


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_discriminator(discriminator, tf)


Tests Passed

Generator

Implement generator to generate an image using z. This function should be able to reuse the variabes in the neural network. Use tf.variable_scope with a scope name of "generator" to allow the variables to be reused. The function should return the generated 28 x 28 x out_channel_dim images.


In [15]:
def generator(z, out_channel_dim, is_train=True):
    """
    Create the generator network
    :param z: Input z
    :param out_channel_dim: The number of channels in the output image
    :param is_train: Boolean if generator is being used for training
    :return: The tensor output of the generator
    """
    # TODO: Implement Function
    
    with tf.variable_scope('generator', reuse=not is_train):
        # First fully connected layer
        x1 = tf.layers.dense(z, 7*7*512)
        # Reshape it to start the convolutional stack
        x1 = tf.reshape(x1, (-1, 7, 7, 512))
        x1 = tf.layers.batch_normalization(x1, training=is_train)
        x1 = tf.maximum(alpha * x1, x1)
        # 7x7x512 now
        
        x2 = tf.layers.conv2d_transpose(x1, 256, 5, strides=2, padding='same')
        x2 = tf.layers.batch_normalization(x2, training=is_train)
        x2 = tf.maximum(alpha * x2, x2)
        # 14x14x256 now
        
        x3 = tf.layers.conv2d_transpose(x2, 256, 5, strides=2, padding='same')
        x3 = tf.layers.batch_normalization(x3, training=is_train)
        x3 = tf.maximum(alpha * x3, x3)
        # 28x28x128 now
        
        
        # Output layer
        logits = tf.layers.conv2d_transpose(x3, out_channel_dim, 5, strides=1, padding='same')
        # 28x28x1/3 out_channel_dim now
        
        out = tf.tanh(logits)
    
    return out


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_generator(generator, tf)


Tests Passed

Loss

Implement model_loss to build the GANs for training and calculate the loss. The function should return a tuple of (discriminator loss, generator loss). Use the following functions you implemented:

  • discriminator(images, reuse=False)
  • generator(z, out_channel_dim, is_train=True)

In [8]:
def model_loss(input_real, input_z, out_channel_dim):
    """
    Get the loss for the discriminator and generator
    :param input_real: Images from the real dataset
    :param input_z: Z input
    :param out_channel_dim: The number of channels in the output image
    :return: A tuple of (discriminator loss, generator loss)
    """
    # TODO: Implement Function
    
    # Smoothing 
    smooth = 0.1
    
    g_model = generator(input_z, out_channel_dim)
    d_model_real, d_logits_real = discriminator(input_real)
    d_model_fake, d_logits_fake = discriminator(g_model, reuse=True)

    d_loss_real = tf.reduce_mean(
        tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_real, 
                                                labels=tf.ones_like(d_model_real)*(1 - smooth)))
    d_loss_fake = tf.reduce_mean(
            tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, 
                                                labels=tf.zeros_like(d_model_fake)))
    g_loss = tf.reduce_mean(
        tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, 
                                                labels=tf.ones_like(d_model_fake)))

    d_loss = d_loss_real + d_loss_fake

    return d_loss, g_loss


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_loss(model_loss)


Tests Passed

Optimization

Implement model_opt to create the optimization operations for the GANs. Use tf.trainable_variables to get all the trainable variables. Filter the variables with names that are in the discriminator and generator scope names. The function should return a tuple of (discriminator training operation, generator training operation).


In [9]:
def model_opt(d_loss, g_loss, learning_rate, beta1):
    """
    Get optimization operations
    :param d_loss: Discriminator loss Tensor
    :param g_loss: Generator loss Tensor
    :param learning_rate: Learning Rate Placeholder
    :param beta1: The exponential decay rate for the 1st moment in the optimizer
    :return: A tuple of (discriminator training operation, generator training operation)
    """
    # TODO: Implement Function
    
    # Get weights and bias to update
    t_vars = tf.trainable_variables()
    d_vars = [var for var in t_vars if var.name.startswith('discriminator')]
    g_vars = [var for var in t_vars if var.name.startswith('generator')]

    # Optimize
    with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
        g_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(g_loss, var_list=g_vars)

    d_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(d_loss, var_list=d_vars)
    
    return d_train_opt, g_train_opt


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_opt(model_opt, tf)


Tests Passed

Neural Network Training

Show Output

Use this function to show the current output of the generator during training. It will help you determine how well the GANs is training.


In [10]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
import numpy as np

def show_generator_output(sess, n_images, input_z, out_channel_dim, image_mode):
    """
    Show example output for the generator
    :param sess: TensorFlow session
    :param n_images: Number of Images to display
    :param input_z: Input Z Tensor
    :param out_channel_dim: The number of channels in the output image
    :param image_mode: The mode to use for images ("RGB" or "L")
    """
    cmap = None if image_mode == 'RGB' else 'gray'
    z_dim = input_z.get_shape().as_list()[-1]
    example_z = np.random.uniform(-1, 1, size=[n_images, z_dim])

    samples = sess.run(
        generator(input_z, out_channel_dim, False),
        feed_dict={input_z: example_z})

    images_grid = helper.images_square_grid(samples, image_mode)
    pyplot.imshow(images_grid, cmap=cmap)
    pyplot.show()

Train

Implement train to build and train the GANs. Use the following functions you implemented:

  • model_inputs(image_width, image_height, image_channels, z_dim)
  • model_loss(input_real, input_z, out_channel_dim)
  • model_opt(d_loss, g_loss, learning_rate, beta1)

Use the show_generator_output to show generator output while you train. Running show_generator_output for every batch will drastically increase training time and increase the size of the notebook. It's recommended to print the generator output every 100 batches.


In [11]:
def train(epoch_count, batch_size, z_dim, learning_rate, beta1, get_batches, data_shape, data_image_mode):
    """
    Train the GAN
    :param epoch_count: Number of epochs
    :param batch_size: Batch Size
    :param z_dim: Z dimension
    :param learning_rate: Learning Rate
    :param beta1: The exponential decay rate for the 1st moment in the optimizer
    :param get_batches: Function to get batches
    :param data_shape: Shape of the data
    :param data_image_mode: The image mode to use for images ("RGB" or "L")
    """
    # TODO: Build Model
    
    #initialize global variables
    show_every=100
    sample_z = np.random.uniform(-1, 1, size=(50, z_dim))
    samples, losses = [], []
    steps = 0
    
    # Call inputs
    input_real, input_z, lr = model_inputs(data_shape[1], data_shape[2], 
                                                      data_shape[3], z_dim)

    # Call Loss
    d_loss, g_loss = model_loss(input_real, input_z, data_shape[3])

    # call Optimizers
    d_opt, g_opt = model_opt(d_loss, g_loss, lr, beta1)
    
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        for epoch_i in range(epoch_count):
            for batch_images in get_batches(batch_size):
                # TODO: Train Model
                steps += 1
                
                # rescale from (-0.5, 0.5) to (-1., 1.)
                n_batch_images = 2 * np.array(batch_images, np.float32)
                
                
                # Sample random noise for G
                batch_z = np.random.uniform(-1, 1, size=(batch_size, z_dim))

                # Run optimizers
                _ = sess.run(d_opt, feed_dict={input_real: n_batch_images, 
                                               input_z: batch_z, 
                                               lr: learning_rate})
                _ = sess.run(g_opt, feed_dict={input_z: batch_z, input_real: n_batch_images, lr:learning_rate})

                #Show statistic and results
                if steps % show_every == 0:
                    show_generator_output(sess, show_n_images, input_z, data_shape[3], data_image_mode)
                    
                    train_loss_d = d_loss.eval({input_z: batch_z, input_real: n_batch_images})
                    train_loss_g = g_loss.eval({input_z: batch_z})

                    print("Epoch {}/{}, batch {}...".format(epoch_i + 1, epochs, steps),
                          "Discriminator Loss: {:.4f}...".format(train_loss_d),
                          "Generator Loss: {:.4f}".format(train_loss_g))

MNIST

Test your GANs architecture on MNIST. After 2 epochs, the GANs should be able to generate images that look like handwritten digits. Make sure the loss of the generator is lower than the loss of the discriminator or close to 0.


In [17]:
batch_size = 64
z_dim = 128
learning_rate = 0.001
beta1 = 0.1
alpha = 0.1


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
epochs = 2

mnist_dataset = helper.Dataset('mnist', glob(os.path.join(data_dir, 'mnist/*.jpg')))
with tf.Graph().as_default():
    train(epochs, batch_size, z_dim, learning_rate, beta1, mnist_dataset.get_batches,
          mnist_dataset.shape, mnist_dataset.image_mode)


Epoch 1/2, batch 100... Discriminator Loss: 1.5964... Generator Loss: 1.8958
Epoch 1/2, batch 200... Discriminator Loss: 1.2043... Generator Loss: 2.6035
Epoch 1/2, batch 300... Discriminator Loss: 0.4585... Generator Loss: 2.5015
Epoch 1/2, batch 400... Discriminator Loss: 1.2902... Generator Loss: 1.6471
Epoch 1/2, batch 500... Discriminator Loss: 1.5518... Generator Loss: 0.4920
Epoch 1/2, batch 600... Discriminator Loss: 1.6416... Generator Loss: 0.3483
Epoch 1/2, batch 700... Discriminator Loss: 1.2185... Generator Loss: 0.7194
Epoch 1/2, batch 800... Discriminator Loss: 1.1559... Generator Loss: 1.0968
Epoch 1/2, batch 900... Discriminator Loss: 1.2903... Generator Loss: 0.8004
Epoch 2/2, batch 1000... Discriminator Loss: 1.2613... Generator Loss: 1.1013
Epoch 2/2, batch 1100... Discriminator Loss: 1.1073... Generator Loss: 1.4176
Epoch 2/2, batch 1200... Discriminator Loss: 1.6759... Generator Loss: 2.2998
Epoch 2/2, batch 1300... Discriminator Loss: 0.9135... Generator Loss: 1.3231
Epoch 2/2, batch 1400... Discriminator Loss: 1.2612... Generator Loss: 0.6531
Epoch 2/2, batch 1500... Discriminator Loss: 1.2167... Generator Loss: 0.6563
Epoch 2/2, batch 1600... Discriminator Loss: 1.1657... Generator Loss: 0.7580
Epoch 2/2, batch 1700... Discriminator Loss: 1.1777... Generator Loss: 0.7146
Epoch 2/2, batch 1800... Discriminator Loss: 1.0442... Generator Loss: 1.6939

CelebA

Run your GANs on CelebA. It will take around 20 minutes on the average GPU to run one epoch. You can run the whole epoch or stop when it starts to generate realistic faces.


In [18]:
batch_size = 64
z_dim = 216 
learning_rate= 0.0005

alpha = 0.1
beta1 = 0.5


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
epochs = 1

celeba_dataset = helper.Dataset('celeba', glob(os.path.join(data_dir, 'img_align_celeba/*.jpg')))
with tf.Graph().as_default():
    train(epochs, batch_size, z_dim, learning_rate, beta1, celeba_dataset.get_batches,
          celeba_dataset.shape, celeba_dataset.image_mode)


Epoch 1/1, batch 100... Discriminator Loss: 0.4164... Generator Loss: 3.7492
Epoch 1/1, batch 200... Discriminator Loss: 1.1827... Generator Loss: 0.7567
Epoch 1/1, batch 300... Discriminator Loss: 1.0965... Generator Loss: 0.7197
Epoch 1/1, batch 400... Discriminator Loss: 0.9682... Generator Loss: 1.5859
Epoch 1/1, batch 500... Discriminator Loss: 1.3750... Generator Loss: 2.1243
Epoch 1/1, batch 600... Discriminator Loss: 0.8590... Generator Loss: 1.2985
Epoch 1/1, batch 700... Discriminator Loss: 1.3740... Generator Loss: 0.8692
Epoch 1/1, batch 800... Discriminator Loss: 1.2539... Generator Loss: 0.6141
Epoch 1/1, batch 900... Discriminator Loss: 1.5217... Generator Loss: 1.5840
Epoch 1/1, batch 1000... Discriminator Loss: 0.8912... Generator Loss: 1.2241
Epoch 1/1, batch 1100... Discriminator Loss: 1.3897... Generator Loss: 1.2545
Epoch 1/1, batch 1200... Discriminator Loss: 0.9412... Generator Loss: 1.1055
Epoch 1/1, batch 1300... Discriminator Loss: 1.0934... Generator Loss: 0.7772
Epoch 1/1, batch 1400... Discriminator Loss: 1.2720... Generator Loss: 1.7401
Epoch 1/1, batch 1500... Discriminator Loss: 1.1326... Generator Loss: 1.3631
Epoch 1/1, batch 1600... Discriminator Loss: 1.5225... Generator Loss: 0.7602
Epoch 1/1, batch 1700... Discriminator Loss: 1.2919... Generator Loss: 0.6892
Epoch 1/1, batch 1800... Discriminator Loss: 1.3556... Generator Loss: 0.5950
Epoch 1/1, batch 1900... Discriminator Loss: 1.5835... Generator Loss: 2.0591
Epoch 1/1, batch 2000... Discriminator Loss: 1.4596... Generator Loss: 0.4448
Epoch 1/1, batch 2100... Discriminator Loss: 1.3804... Generator Loss: 0.6270
Epoch 1/1, batch 2200... Discriminator Loss: 2.2282... Generator Loss: 2.2491
Epoch 1/1, batch 2300... Discriminator Loss: 1.3382... Generator Loss: 0.6635
Epoch 1/1, batch 2400... Discriminator Loss: 1.5636... Generator Loss: 0.4767
Epoch 1/1, batch 2500... Discriminator Loss: 1.3015... Generator Loss: 0.6974
Epoch 1/1, batch 2600... Discriminator Loss: 1.2671... Generator Loss: 0.8913
Epoch 1/1, batch 2700... Discriminator Loss: 1.2406... Generator Loss: 0.8465
Epoch 1/1, batch 2800... Discriminator Loss: 1.5518... Generator Loss: 0.4241
Epoch 1/1, batch 2900... Discriminator Loss: 1.3817... Generator Loss: 0.6569
Epoch 1/1, batch 3000... Discriminator Loss: 1.2887... Generator Loss: 0.7650
Epoch 1/1, batch 3100... Discriminator Loss: 1.4868... Generator Loss: 0.5065

Submitting This Project

When submitting this project, make sure to run all the cells before saving the notebook. Save the notebook file as "dlnd_face_generation.ipynb" and save it as a HTML file under "File" -> "Download as". Include the "helper.py" and "problem_unittests.py" files in your submission.