In [ ]:
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Trains and Evaluates the MNIST network using a feed dictionary."""
import argparse
import os
import sys
import time
import random
import logging
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
from tensorflow.examples.tutorials.mnist import mnist
from kubeflow import fairing
fairing.config.set_builder(name='append')
INPUT_DATA_DIR = '/tmp/tensorflow/mnist/input_data/'
MAX_STEPS = 2000
BATCH_SIZE = 100
LEARNING_RATE = 0.3
HIDDEN_1 = 128
HIDDEN_2 = 32
# HACK: Ideally we would want to have a unique subpath for each instance of the job, but since we can't
# we are instead appending HOSTNAME to the logdir
LOG_DIR = os.path.join(os.getenv('TEST_TMPDIR', '/tmp'),
'tensorflow/mnist/logs/fully_connected_feed/', os.getenv('HOSTNAME', ''))
MODEL_DIR = os.path.join(LOG_DIR, 'model.ckpt')
def train():
data_sets = input_data.read_data_sets(INPUT_DATA_DIR)
images_placeholder = tf.placeholder(
tf.float32, shape=(BATCH_SIZE, mnist.IMAGE_PIXELS))
labels_placeholder = tf.placeholder(tf.int32, shape=(BATCH_SIZE))
logits = mnist.inference(images_placeholder,
HIDDEN_1,
HIDDEN_2)
loss = mnist.loss(logits, labels_placeholder)
train_op = mnist.training(loss, LEARNING_RATE)
summary = tf.summary.merge_all()
init = tf.global_variables_initializer()
saver = tf.train.Saver()
sess = tf.Session()
summary_writer = tf.summary.FileWriter(LOG_DIR, sess.graph)
sess.run(init)
data_set = data_sets.train
for step in xrange(MAX_STEPS):
images_feed, labels_feed = data_set.next_batch(BATCH_SIZE, False)
feed_dict = {
images_placeholder: images_feed,
labels_placeholder: labels_feed,
}
_, loss_value = sess.run([train_op, loss],
feed_dict=feed_dict)
if step % 100 == 0:
print("At step {}, loss = {}".format(step, loss_value))
summary_str = sess.run(summary, feed_dict=feed_dict)
summary_writer.add_summary(summary_str, step)
summary_writer.flush()
In [ ]:
train = fairing.config.fn(train)
train()