Loading IoT Data


In [3]:
import pandas as pd

df = pd.read_csv("https://data.sparkfun.com/output/n1YRX98dq9C6X0LrZdvD.csv")
df.head(10)


Out[3]:
device moisture humidity uv light temp timestamp
0 FZEDA446D0036D501 0 53.3125 0.288086 21 24.06250 2015-07-14T18:41:04.997Z
1 FZEDA446D0036D501 0 53.5625 0.288086 21 24.03125 2015-07-14T18:36:01.620Z
2 FZEDA446D0036D501 0 53.6250 0.288086 21 24.03125 2015-07-14T18:30:58.520Z
3 FZEDA446D0036D501 0 53.6250 0.288086 21 23.90625 2015-07-14T18:25:55.263Z
4 FZEDA446D0036D501 0 53.6875 0.288086 20 23.87500 2015-07-14T18:20:52.129Z
5 FZEDA446D0036D501 0 53.8750 0.288086 20 23.84375 2015-07-14T18:15:48.669Z
6 FZEDA446D0036D501 0 54.0000 0.288086 21 23.87500 2015-07-14T18:10:45.112Z
7 FZEDA446D0036D501 0 54.0000 0.288086 17 23.87500 2015-07-14T18:05:41.741Z
8 FZEDA446D0036D501 0 54.0625 0.283203 17 23.87500 2015-07-14T18:00:38.582Z
9 FZEDA446D0036D501 0 54.0625 0.288086 21 23.78125 2015-07-14T17:55:30.443Z

In [2]:
df.describe()


Out[2]:
moisture humidity uv light temp
count 316.000000 316.000000 316.000000 316.000000 316.000000
mean 1.905063 54.337619 0.283682 20.056962 23.376483
std 30.916536 2.524159 0.001455 12.408519 0.977868
min 0.000000 50.875000 0.283203 0.000000 21.687500
25% 0.000000 52.437500 0.283203 4.000000 22.335938
50% 0.000000 52.937500 0.283203 24.000000 23.968750
75% 0.000000 56.687500 0.283203 31.000000 24.093750
max 547.000000 59.062500 0.288086 43.000000 24.656250

In [16]:
%matplotlib inline
import numpy as np
import matplotlib
from matplotlib import pyplot as plt
import seaborn as sns

In [24]:
plt.figure()
df.plot('timestamp', subplots=True, figsize=(8, 6))
plt.gcf().autofmt_xdate()


<matplotlib.figure.Figure at 0x7f4491304b38>

In [ ]:


In [ ]: