In [1]:
from keras.layers.core import Dense, Activation, Dropout
from keras.layers.recurrent import LSTM
from keras.models import Sequential
import lstm, time
In [3]:
#loading the Data.
X_train, y_train, X_test, y_test = lstm.load_data('data/sp500.csv', 50, True)
In [4]:
#building Model
model = Sequential()
model.add(LSTM(input_dim=1,
output_dim=50,
return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(100, return_sequences=False))
model.add(Dropout(0.2))
model.add(Dense(
output_dim=1))
model.add(Activation('linear'))
start = time.time()
model.compile(loss='mse', optimizer='rmsprop')
print('compilation time:', time.time() - start)
In [5]:
#Train the model
model.fit(
X_train,
y_train,
batch_size=512,
nb_epoch=1,
validation_split=0.05)
Out[5]:
In [6]:
print(lstm.plot_results_multiple)
In [7]:
#plot results
predictions = lstm.predict_sequences_multiple(model, X_test, 50, 50)
lstm.plot_results_multiple(predictions, y_test, 50)