In [1]:
import pandas as pd
import skgstat as skg
import numpy as np
In [2]:
xy = pd.read_csv('radar_xy.csv', header=None)
xy.columns = ['x', 'y']
xy.head()
rad24 = pd.read_csv('./radar_sent/radar_snap_24h_2011_08_05-00_00.csv', header=None)
rad24 = rad24.iloc[0,5:1000]
rad24.index = np.arange(0,len(rad24),1)
In [3]:
wet = rad24>0
In [7]:
coords = np.array(xy)
coords = coords[0:995]
In [8]:
data = np.array(rad24)
In [6]:
len(wet)
Out[6]:
In [9]:
len(coords)
Out[9]:
In [10]:
from scipy.spatial.distance import pdist, squareform
In [11]:
distances = squareform(pdist(coords[wet]))
In [12]:
lags = np.arange(2, 100, 2)
In [13]:
lags
Out[13]:
In [10]:
#bm = skg.binning.binify_even_width(coords[wet], w=2, maxlag=100)
In [15]:
len(coords[wet])
Out[15]:
In [18]:
V = skg.Variogram(coordinates=coords[wet], values=data[wet], maxlag=100, N=5, is_directional=True)
In [19]:
print(V)
In [20]:
V.hist
Out[20]:
In [49]:
V.experimental()
In [ ]: