In [1]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

In [5]:
df_price = pd.read_csv("data/Weed_Price.csv")

In [6]:
df_price.head()


Out[6]:
State HighQ HighQN MedQ MedQN LowQ LowQN date
0 Alabama 339.06 1042 198.64 933 149.49 123 2014-01-01
1 Alaska 288.75 252 260.60 297 388.58 26 2014-01-01
2 Arizona 303.31 1941 209.35 1625 189.45 222 2014-01-01
3 Arkansas 361.85 576 185.62 544 125.87 112 2014-01-01
4 California 248.78 12096 193.56 12812 192.92 778 2014-01-01

In [7]:
df_price.tail()


Out[7]:
State HighQ HighQN MedQ MedQN LowQ LowQN date
22894 Virginia 364.98 3513 293.12 3079 NaN 284 2014-12-31
22895 Washington 233.05 3337 189.92 3562 NaN 160 2014-12-31
22896 West Virginia 359.35 551 224.03 545 NaN 60 2014-12-31
22897 Wisconsin 350.52 2244 272.71 2221 NaN 167 2014-12-31
22898 Wyoming 322.27 131 351.86 197 NaN 12 2014-12-31

In [8]:
df_price.describe()


Out[8]:
HighQ HighQN MedQ MedQN LowQ LowQN
count 22899.000000 22899.000000 22899.000000 22899.000000 12342.000000 22899.000000
mean 329.759854 2274.743657 247.618306 2183.737805 203.747847 202.804489
std 41.173167 2641.936586 44.276015 2789.902626 105.480774 220.531987
min 202.020000 93.000000 144.850000 134.000000 63.700000 11.000000
25% 303.780000 597.000000 215.775000 548.000000 147.117500 51.000000
50% 342.310000 1420.000000 245.800000 1320.000000 186.760000 139.000000
75% 356.550000 2958.000000 274.155000 2673.000000 221.360000 263.000000
max 415.700000 18492.000000 379.000000 22027.000000 734.650000 1287.000000

In [9]:
50*365


Out[9]:
18250

In [10]:
df_demo = pd.read_csv("data/Demographics_State.csv")

In [11]:
df_demo.describe()


Out[11]:
total_population percent_white percent_black percent_asian percent_hispanic per_capita_income median_rent median_age
count 51.000000 51.000000 51.000000 51.000000 51.000000 51.000000 51.000000 51.000000
mean 6108560.666667 70.254902 10.823529 3.725490 10.803922 28053.803922 719.490196 37.639216
std 6904016.387730 16.116877 10.867761 5.355664 9.996038 4659.378182 189.820375 2.352367
min 570134.000000 23.000000 0.000000 1.000000 1.000000 20618.000000 448.000000 29.600000
25% 1712494.500000 59.500000 3.000000 1.000000 4.500000 24908.500000 566.000000 36.300000
50% 4361333.000000 74.000000 7.000000 2.000000 8.000000 26824.000000 664.000000 37.600000
75% 6712318.500000 82.500000 14.500000 4.000000 12.500000 30144.000000 839.000000 38.950000
max 37659181.000000 94.000000 49.000000 37.000000 47.000000 45290.000000 1220.000000 43.200000

In [12]:
df_pop = pd.read_csv("data/Population_State.csv")

In [13]:
df_pop.describe


Out[13]:
<bound method DataFrame.describe of                   region     value
0                alabama   4777326
1                 alaska    711139
2                arizona   6410979
3               arkansas   2916372
4             california  37325068
5               colorado   5042853
6            connecticut   3572213
7               delaware    900131
8   district of columbia    605759
9                florida  18885152
10               georgia   9714569
11                hawaii   1362730
12                 idaho   1567803
13              illinois  12823860
14               indiana   6485530
15                  iowa   3047646
16                kansas   2851183
17              kentucky   4340167
18             louisiana   4529605
19                 maine   1329084
20              maryland   5785496
21         massachusetts   6560595
22              michigan   9897264
23             minnesota   5313081
24           mississippi   2967620
25              missouri   5982413
26               montana    990785
27              nebraska   1827306
28                nevada   2704204
29         new hampshire   1317474
30            new jersey   8793888
31            new mexico   2055287
32              new york  19398125
33        north carolina   9544249
34          north dakota    676253
35                  ohio  11533561
36              oklahoma   3749005
37                oregon   3836628
38          pennsylvania  12699589
39          rhode island   1052471
40        south carolina   4630351
41          south dakota    815871
42             tennessee   6353226
43                 texas  25208897
44                  utah   2766233
45               vermont    625498
46              virginia   8014955
47            washington   6738714
48         west virginia   1850481
49             wisconsin   5687219
50               wyoming    562803>

In [ ]: