In [1]:
%matplotlib inline
In [2]:
import sys
# This is needed for large-ish dataset KD-tree construction. Fingers crossed that it actually works...
sys.setrecursionlimit(10000)
In [3]:
import sklearn
In [4]:
%time %run CategorizedDistances.py
In [ ]:
%debug
In [5]:
from matplotlib import pyplot as plt
In [6]:
all_dists = min_dist_to_nodes[2] + min_dist_to_nodes[3] + min_dist_to_nodes[4] + min_dist_to_nodes[5]
In [7]:
plt.hist(all_dists, bins=25, cumulative=False)
plt.xlabel('Distance (meters)')
plt.ylabel('Count')
plt.title('Histogram of Distances from EQs to All Categorized Worm Points')
plt.savefig('AppBasinBGA_EQDistToCatAllWormsHistogram.png')
In [30]:
names = ['Censored or End','','Moderately Low', 'Moderate', 'Moderately High','High']
cats = [0,1,2,3,4,5]
heights = np.zeros((6),np.int)
for i in classes:
if i == None:
idx = 0
else:
idx = i
heights[idx] += 1
#plt.hist([c for c in classes if c != None], bins=4, cumulative=False)
fig, ax = plt.subplots()
ax.bar(cats,heights, color=['black','black','lawngreen','yellow','orange','red'])
ax.set_xticklabels(names, rotation=45, fontsize=13)
plt.xlabel('Risk Categories',fontsize=14)
plt.ylabel('Count',fontsize=14)
plt.title('Histogram of Categories of Closest Gravity Worm Points to EQs',fontsize=16, y= 1.08)
#plt.legend()
plt.savefig('AppBasinRiskHistogram.png')
In [9]:
print heights
In [ ]:
print min_dist_to_nodes
In [ ]:
len(min_dist_to_nodes)
In [ ]:
bad_depth_hit_count = 1372
good_depth_hit_count = 2605
total_EQs = 5712
print float(good_depth_hit_count + bad_depth_hit_count)/float(total_EQs)
print eq_query.count()
In [ ]:
depths = []
for e in eq_query.all():
dpth = e[0]._Depth_km_
if dpth == None:
continue
depths += [dpth*1000.]
In [ ]:
plt.hist(depths,range=(0,35000),bins=70,log=True)
In [ ]:
plt.hist?
In [ ]:
plt.hist(worm_pt_coords[:,2])
In [ ]: