In [ ]:
from pyoptools.all import *
In [ ]:
P1=Plane(shape=Circular(radius=(25)))
plot3D(P1,center=(0,0,0),size=(60,60),rot=[(0,0,0)],scale=6)
In [ ]:
P2=Plane(shape=Rectangular(size=(50,50)))
plot3D(P2,center=(0,0,0),size=(60,60),rot=[(0,0,0)],scale=6)
In [ ]:
P3=Plane(shape=Triangular(coord=((0,25),(25,-25),(-25,-25))))
plot3D(P3,center=(0,0,0),size=(60,60),scale=6)
In [ ]:
S=Spherical(curvature=1/200., shape=Circular(radius=145.),reflectivity=0)
plot3D(S,center=(0,0,0),size=(400,400),scale=1)
In [ ]:
S3=Cylinder(radius=36,length=100,reflectivity=1)
plot3D(S3,center=(0,0,0),size=(100,100),rot=[(0,pi/32,0)],scale=4)
In [ ]:
S1=Cylindrical(shape=Rectangular(size=(50,100)),curvature=1/20.)
plot3D(S1,center=(0,0,0),size=(150,150),rot=[(pi/4,0,0)],scale=2)
In [ ]:
S2=Cylindrical(shape=Circular(radius=(50)),curvature=1/100.)
plot3D(S2,center=(0,0,0),size=(150,150),rot=[(-pi/4,0,0)],scale=2)
In [ ]:
%%latex
$$Z=\frac{(Ax*x^2+Ay*y^2)}{(1+\sqrt{(1-(1+Kx)*Ax^2*x^2-(1+Ky)*Ay^2*y^2))}}+ poly2d()$$
In [ ]:
sa=Aspherical(shape=Rectangular(size=(5,5)),Ax=.2,Ay=.2,Kx=.1, Ky=.15, poly=poly2d((0,0,0,.5,0,.5)))
plot3D(sa,center=(0,0,5),size=(10,10),rot=[(-3*pi/10,pi/4,0)],scale=40)
In [ ]:
sa=Aspherical(shape=Circular(radius=2.5),Ax=.2,Ay=.2,Kx=.1, Ky=.15, poly=poly2d((0,0,0,.5,0,.5)))
plot3D(sa,center=(0,0,5),size=(10,10),rot=[(-3*pi/10,pi/4,0)],scale=40)
In [ ]: