In [8]:
%matplotlib inline

In [9]:
import pandas

In [21]:
df = pandas.read_csv(r'D:\Dev\varsomdata2\localstorage\aval_danger.csv', index_col=0, parse_dates=['date'])
df.info()


<class 'pandas.core.frame.DataFrame'>
Int64Index: 5 entries, 0 to 4
Data columns (total 57 columns):
avalanche_forecast                           5 non-null object
avalanche_nowcast                            0 non-null float64
avalanche_problem_1_aval_size                5 non-null object
avalanche_problem_1_aval_size_tid            5 non-null int64
avalanche_problem_1_aval_type                5 non-null object
avalanche_problem_1_aval_type_tid            5 non-null int64
avalanche_problem_1_cause_name               5 non-null object
avalanche_problem_1_cause_tid                5 non-null int64
avalanche_problem_1_main_cause               0 non-null float64
avalanche_problem_1_problem                  5 non-null object
avalanche_problem_1_problem_tid              5 non-null int64
avalanche_problem_1_source                   3 non-null object
avalanche_problem_2_aval_size                5 non-null object
avalanche_problem_2_aval_size_tid            5 non-null int64
avalanche_problem_2_aval_type                5 non-null object
avalanche_problem_2_aval_type_tid            5 non-null int64
avalanche_problem_2_cause_name               5 non-null object
avalanche_problem_2_cause_tid                5 non-null int64
avalanche_problem_2_main_cause               0 non-null float64
avalanche_problem_2_problem                  5 non-null object
avalanche_problem_2_problem_tid              5 non-null int64
avalanche_problem_2_source                   0 non-null float64
avalanche_problem_3_aval_size                5 non-null object
avalanche_problem_3_aval_size_tid            5 non-null int64
avalanche_problem_3_aval_type                5 non-null object
avalanche_problem_3_aval_type_tid            5 non-null int64
avalanche_problem_3_cause_name               5 non-null object
avalanche_problem_3_cause_tid                5 non-null int64
avalanche_problem_3_main_cause               0 non-null float64
avalanche_problem_3_problem                  5 non-null object
avalanche_problem_3_problem_tid              5 non-null int64
avalanche_problem_3_source                   0 non-null float64
danger_level                                 5 non-null int64
danger_level_name                            5 non-null object
data_table                                   5 non-null object
date                                         5 non-null datetime64[ns]
main_message_en                              0 non-null float64
main_message_no                              5 non-null object
metadata                                     5 non-null object
mountain_weather_change_hour_of_day_start    5 non-null int64
mountain_weather_change_hour_of_day_stop     5 non-null int64
mountain_weather_change_wind_direction       2 non-null object
mountain_weather_change_wind_speed           2 non-null object
mountain_weather_fl_hour_of_day_start        5 non-null int64
mountain_weather_fl_hour_of_day_stop         5 non-null int64
mountain_weather_freezing_level              5 non-null float64
mountain_weather_precip_most_exposed         5 non-null float64
mountain_weather_precip_region               5 non-null float64
mountain_weather_temperature_elevation       5 non-null float64
mountain_weather_temperature_max             5 non-null float64
mountain_weather_temperature_min             5 non-null float64
mountain_weather_wind_direction              5 non-null object
mountain_weather_wind_speed                  5 non-null object
nick                                         5 non-null object
region_name                                  5 non-null object
region_regobs_id                             5 non-null int64
source                                       5 non-null object
dtypes: datetime64[ns](1), float64(13), int64(18), object(25)
memory usage: 2.3+ KB

In [22]:
df.plot(x='date', y='avalanche_problem_1_aval_size_tid')


Out[22]:
<matplotlib.axes._subplots.AxesSubplot at 0x2b7cff7a860>

In [23]:
# implement a default - check values for not given at api.nve.no

df.head(5)


Out[23]:
avalanche_forecast avalanche_nowcast avalanche_problem_1_aval_size avalanche_problem_1_aval_size_tid avalanche_problem_1_aval_type avalanche_problem_1_aval_type_tid avalanche_problem_1_cause_name avalanche_problem_1_cause_tid avalanche_problem_1_main_cause avalanche_problem_1_problem ... mountain_weather_precip_region mountain_weather_temperature_elevation mountain_weather_temperature_max mountain_weather_temperature_min mountain_weather_wind_direction mountain_weather_wind_speed nick region_name region_regobs_id source
0 De få snøflekkene som ligger igjen høyt til fj... NaN Not given 0 Not given 0 Not given 0 NaN Not given ... 0.0 1400.0 -2.0 -7.0 S Liten kuling Andreas@nve Trollheimen 3022 Forecast
1 De få snøflekkene som ligger igjen høyt til fj... NaN Not given 0 Not given 0 Not given 0 NaN Not given ... 0.0 1400.0 -2.0 -13.0 S Frisk bris Andreas@nve Trollheimen 3022 Forecast
2 Ny nedbør og økende vind fra nordvest kan føre... NaN 1 - Små 1 Tørre flakskred 20 Nedføyket svakt lag med nysnø 10 NaN Nysnø - flakskred ... 4.0 1400.0 -2.0 -6.0 SW Bris Andreas@nve Trollheimen 3022 Forecast
3 Vind og nysnø vil føre til danning av ferske n... NaN 2 - Middels 2 Tørre flakskred 20 Nedføyket svakt lag med nysnø 10 NaN Nysnø - flakskred ... 16.0 1400.0 -6.0 -12.0 NW Stiv kuling Andreas@nve Trollheimen 3022 Forecast
4 Nysnø og vind vil legge opp fersk fokksnø i le... NaN 2 - Middels 2 Tørre flakskred 20 Nedføyket svakt lag med nysnø 10 NaN Nysnø - flakskred ... 8.0 1400.0 -6.0 -12.0 W Liten kuling torolav@obskorps Trollheimen 3022 Forecast

5 rows × 57 columns


In [ ]: