In [2]:
import sys
import pandas as pd
import numpy as np
import json
import matplotlib.pyplot as plt
import seaborn as sns
from pathlib import Path
sns.set(style="white")
#pd.set_option("display.max_rows",6)
%matplotlib inline
In [3]:
# analysis of entire data set - collected using varsomdata2.varsomscripts.avalanchewarningscomplete.get_season_17_18()
data_pth = Path(r'D:\Dev\varsomdata2\localstorage\aval_incidents_2013_2019.csv')
inc_df = pd.read_csv(data_pth, index_col=0)
inc_df.head()
Out[3]:
In [4]:
inc_df.columns
Out[4]:
In [5]:
inc_df['DtObsTime'][0][:4]
Out[5]:
In [6]:
inc_df['year'] = inc_df.apply(lambda d: int(d['DtObsTime'][:4]), axis=1)
In [7]:
inc_df.groupby(['year']).count()
#plt.plot(inc_df['DtObsTime'], inc_df['GeoHazardTID'])
Out[7]:
In [ ]: