In [1]:
import os
import tables
import klustaviewa.dataio as kvio
In [2]:
folder = r"D:\Spike sorting\sirota"
basename = "ec016.694_711"
In [3]:
filenames = kvio.find_filenames(os.path.join(folder, basename))
fileindex = kvio.find_index(os.path.join(folder, basename))
In [5]:
filenames
Out[5]:
In [7]:
clusters = kvio.read_clusters(filenames['clu'])
#aclusters = kvio.read_clusters(filenames['aclu'])
#acluinfo = kvio.read_cluster_info(filenames['acluinfo'])
#groupinfo = kvio.read_group_info(filenames['groupinfo'])
metadata = kvio.read_xml(filenames['xml'], fileindex)
#probe = kvio.read_probe(filenames['probe'])
In [8]:
metadata
Out[8]:
In [6]:
hdf_main = tables.openFile('basename' + '.h5', mode='w')
In [7]:
shanks = hdf_main.createGroup('/', 'shanks')
shank0 = hdf_main.createGroup('/shanks', 'shank0')
In [8]:
spikes_description = dict(time=tables.Int64Col(),
mask_binary=tables.BoolCol(shape=(metadata['nchannels'],)),
mask_float=tables.Float32Col(shape=(metadata['nchannels'],)),
features=tables.Float32Col(shape=(metadata['fetdim'], metadata['nchannels'],)),
cluster=tables.Int32Col(),)
In [9]:
spikes_table = hdf_main.createTable('/shanks/shank0', 'spikes', spikes_description)
In [11]:
Out[11]:
In [19]:
spike = 0
spikes_table.row['time']
Out[19]: