In [1]:
#支持向量机 根据训练样本的分布搜索所有可能分类器中最佳的那个
from sklearn.datasets import load_iris
digits = load_iris()
In [2]:
digits.data.shape
Out[2]:
In [3]:
#切分训练集和测试集
from sklearn.cross_validation import train_test_split
In [4]:
X_train,Xtest,Y_Train,Y_test=train_test_split(digits.data,
digits.target,
test_size=0.25,
random_state=33)
In [5]:
Y_Train.shape
Out[5]:
In [18]:
Y_test.shape
Out[18]:
In [25]:
#导入标准化模块, 标准化数据
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestRegressor,ExtraTreesRegressor,GradientBoostingRegressor
In [21]:
ss = StandardScaler()
In [22]:
X_train = ss.fit_transform(X_train)
In [23]:
Xtest = ss.transform(Xtest)
In [24]:
rfr = RandomForestRegressor()
rfr.fit(X_train, Y_Train)
rfr_y_predic = rfr.predict(Xtest)
In [26]:
etr = ExtraTreesRegressor()
etr.fit(X_train, Y_Train)
etr_y_predic = etr.predict(Xtest)
In [27]:
gbr = GradientBoostingRegressor()
gbr.fit(X_train, Y_Train)
gbr_y_predic = gbr.predict(Xtest)
In [28]:
from sklearn.metrics import r2_score,mean_absolute_error,mean_squared_error
In [29]:
print 'The Accuracy of RandomForestRegressor is',rfr.score(Xtest, Y_test)
print 'The Value of R-squared of RandomForestRegressor is',r2_score(Y_test, rfr_y_predic)
print 'The Value of mean_absolute_error of RandomForestRegressor is',mean_absolute_error(Y_test, rfr_y_predic)
print 'The Value of mean_squared_error of RandomForestRegressor is',mean_squared_error(Y_test, rfr_y_predic)
In [30]:
print 'The Accuracy of ExtraTreesRegressor is',etr.score(Xtest, Y_test)
print 'The Value of R-squared of ExtraTreesRegressor is',r2_score(Y_test, etr_y_predic)
print 'The Value of mean_absolute_error of ExtraTreesRegressor is',mean_absolute_error(Y_test, etr_y_predic)
print 'The Value of mean_squared_error of ExtraTreesRegressor is',mean_squared_error(Y_test, etr_y_predic)
In [31]:
print 'The Accuracy of GradientBoostingRegressor is',gbr.score(Xtest, Y_test)
print 'The Value of R-squared of GradientBoostingRegressor is',r2_score(Y_test, gbr_y_predic)
print 'The Value of mean_absolute_error of GradientBoostingRegressor is',mean_absolute_error(Y_test, gbr_y_predic)
print 'The Value of mean_squared_error of GradientBoostingRegressor is',mean_squared_error(Y_test, gbr_y_predic)
In [ ]: