In [2]:
#支持向量机 根据训练样本的分布搜索所有可能分类器中最佳的那个
from sklearn.datasets import load_iris
digits = load_iris()
In [3]:
digits.data.shape
Out[3]:
In [4]:
#切分训练集和测试集
from sklearn.cross_validation import train_test_split
In [5]:
X_train,Xtest,Y_Train,Y_test=train_test_split(digits.data,
digits.target,
test_size=0.25,
random_state=33)
In [6]:
Y_Train.shape
Out[6]:
In [7]:
Y_test.shape
Out[7]:
In [1]:
#导入标准化模块, 标准化数据
from sklearn.preprocessing import StandardScaler
from sklearn.tree import DecisionTreeRegressor #导入回归树
In [8]:
ss = StandardScaler()
In [9]:
X_train = ss.fit_transform(X_train)
In [10]:
Xtest = ss.transform(Xtest)
In [13]:
dtr = DecisionTreeRegressor() #使用默认配置
dtr.fit(X_train, Y_Train)
dtr_y_predic = dtr.predict(Xtest)
In [20]:
from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_error
In [21]:
print 'The Accuracy of DecisionTreeRegressor is',dtr.score(Xtest, Y_test)
print 'The Value of R-squared of DecisionTreeRegressor is',r2_score(Y_test, dtr_y_predic)
print 'The Value of mean_absolute_error of DecisionTreeRegressor is',mean_absolute_error(Y_test, dtr_y_predic)
print 'The Value of mean_squared_error of DecisionTreeRegressor is',mean_squared_error(Y_test, dtr_y_predic)
In [ ]: