In [49]:
using Plots;
using Formatting;
gadfly();
In [43]:
include("../fdtd/update.jl");
include("../fdtd/sources.jl");
include("../fdtd/boundaries.jl");
using update;
using sources;
In [82]:
# Global parameters
size = 5000;
endTime = 20000;
num_snaps = 1000;
snap_step = div(endTime, num_snaps);
snaptime = 18000;
snap = zeros(size);
# Pulse
delay = 5000.;
width = 5000.;
inc_pos = 1000.;
# Monitors
refl = 0.0;
reflection_counter = zeros(num_snaps);
refl_counter_pos = 50;
trans = 0.0;
transmission_counter = zeros(num_snaps);
trans_counter_pos = 3000;
# Medium
eps1 = 42;
eps0 = 1;
#Grid
# Magnetic
hy = zeros(size);
mu = ones(size);
chyh = ones(size);
chye = ones(size);
# Electric
ez = zeros(size);
eps = ones(size);
cezh = ones(size);
ceze = ones(size);
for i in 1:div(size, 2) - 1
eps[i] = eps0;
end
for i in div(size, 2):size
eps[i] = eps1;
end
#
# setup CPML
#
# constants
dx = 1.0;
R0 = 1e-5;
m = 2.85;
#m = 4;
pml_width = 20.0;
# coeffs
sigma_max = -(m+1)*log(R0)/2/globals.imp0/(pml_width*dx)
sigma_x = zeros(size);
sigma_m_x = zeros(size);
for i in 1:round(Int, pml_width)
sigma_x[i+1] = sigma_max * real(Complex(((pml_width-(i-1)-0.5)/pml_width))^m)
sigma_m_x[i] = sigma_max * real(Complex(((pml_width-(i-1))/pml_width))^m)
sigma_x[size-(i-1)] = sigma_max * real(Complex(((pml_width-i-0.5)/pml_width))^m)
sigma_m_x[size-(i-1)] = sigma_max * real(Complex(((pml_width-i)/pml_width))^m)
end
aex = exp(-sigma_x .* globals.imp0)-1
bex = exp(-sigma_x .* globals.imp0)
ahx = exp(-sigma_m_x .* globals.imp0)-1
bhx = exp(-sigma_m_x .* globals.imp0)
# arrays
p_hy = zeros(size);
p_ez = zeros(size);
# output params
ez_snapshot = Array{Any}(num_snaps);
hy_snapshot = Array{Any}(num_snaps);
In [83]:
# Time steps
for time in 1:endTime
# Incident
ez_inc = exp(-(time + 0.5 - (-0.5) - delay) * (time + 0.5 - (-0.5) - delay) / width);
hy_inc = exp(-(time - delay) * (time - delay) / width);
#
# Magnetic
#
# CPML
for i in 1:size-1
p_hy[i] = bhx[i]*p_hy[i] + ahx[i]*(ez[i+1] - ez[i])
end
# Interior update
for i = 1:size-1
hy[i] = chyh[i] * hy[i] + chye[i] * (ez[i+1] - ez[i]) / globals.imp0 / mu[i]
end
# CPML
for i in 1:size-1
hy[i] += p_hy[i]/globals.imp0/mu[i]
end
# TFSF
hy[inc_pos-1] -= hy_inc / globals.imp0 / mu[inc_pos-1]
#
# Electric
#
# CPML
for i in 2:size
p_ez[i] = bex[i]*p_ez[i] + aex[i]*(hy[i] - hy[i-1])
end
# Interior update
for i = 2:size
ez[i] = ceze[i] * ez[i] + cezh[i] * (hy[i] - hy[i-1]) * globals.imp0 / eps[i]
end
# CPML
for i in 2:size
ez[i] += p_ez[i]*globals.imp0/eps[i]
end
# TFSF
ez[inc_pos] += ez_inc / eps[inc_pos]
refl += (abs(ez[refl_counter_pos]*hy[refl_counter_pos-1]));
trans +=(abs(ez[trans_counter_pos]*hy[trans_counter_pos-1]));
# Snapshots for animation
#if mod(time, snap_step) == 0
# t = div(time,snap_step)
# ez_snapshot[t] = (time, copy(ez))
# hy_snapshot[t] = (time, copy(hy).*globals.imp0)
# # Counters
# reflection_counter[t] = refl;
# transmission_counter[t] = trans;
#end
if time == snaptime
snap = copy(ez)
end
end
In [ ]:
anim = Animation()
for i = 1:num_snaps
p = plot(1:size, ez_snapshot[i][2], lab="Ez")
plot!(1:size, hy_snapshot[i][2], lab="Hy*imp0")
time = ez_snapshot[i][1]
plot!(ann=[(size*0.8, 1.5, "time =$time")])
plot!(ann=[(0, 1.1, "CMPL")])
plot!(ann=[(size/2-size*0.1, 1.2, "Eps = $eps0")])
plot!(ann=[(size/2, 1.1, "Eps = $eps1")])
plot!([size/2, size/2], [-2, 2])
plot!(ann=[(size*0.9, 1.1, "CPML")])
R = fmt( "1.2e", reflection_counter[i])
plot!(ann=[(refl_counter_pos, -1.1, "R = $R")])
plot!([refl_counter_pos, refl_counter_pos], [-1, 1])
T = fmt( "1.2e", transmission_counter[i])
plot!(ann=[(trans_counter_pos, -1.1, "T = $T")])
plot!([trans_counter_pos, trans_counter_pos], [-1, 1])
plot!(xlims=(1, size), ylims=(-2, 2))
frame(anim, p)
end
gif(anim, "./Task2/Eps9_Reflection.gif", fps=15)
In [84]:
R = refl / (trans + refl)
F_R = abs((sqrt(eps0)-sqrt(eps1))/(sqrt(eps0)+sqrt(eps1)))^2
err = abs(( F_R - R) / F_R) * 100.
print("FDTD R = $R\n")
print("Frensel R = $F_R\n")
print("Error = $err%\n")
In [90]:
p = plot(1:size, snap, lab="Ez")
plot!(ann=[(size/2-size*0.1, 1.2, "Eps = $eps0")])
plot!(ann=[(size/2, 1.1, "Eps = $eps1")])
plot!([size/2, size/2], [-2, 2])
plot!([refl_counter_pos, refl_counter_pos], [-1, 1])
plot!([trans_counter_pos, trans_counter_pos], [-1, 1])
plot!(xlims=(1, size), ylims=(-2, 2))
Out[90]:
In [ ]: