In [11]:
using Plots;
gadfly();
In [12]:
include("../fdtd/update.jl");
include("../fdtd/sources.jl");
include("../fdtd/boundaries.jl");
using update;
using sources;
In [33]:
#Global parameters
size = 200;
endTime = 400;
num_snaps = 200;
snap_step = div(endTime, num_snaps);
eps1 = 4;
eps0 = 1;
#Grid
# Magnetic
hy = zeros(size);
mu = ones(size);
chyh = ones(size);
chye = ones(size);
# Electric
ez = zeros(size);
eps = ones(size);
cezh = ones(size);
ceze = ones(size);
for i in 1:99
eps[i] = eps0;
end
for i in 100:size
eps[i] = eps1;
end
#
# Left boundary ABC
#
boundaries.setup_first_order_abc!(eps, mu, 1, false)
#
# Right boundary CPML
#
# constants
dx = 1.0;
R0 = 1e-5;
m = 2.85;
# m = 4;
pml_width = 30.0;
# coeffs
sigma_max = -(m+1)*log(R0)/2/globals.imp0/(pml_width*dx)
sigma_x = zeros(size);
sigma_m_x = zeros(size);
for i in 1:int(pml_width)
sigma_x[size-(i-1)] = sigma_max * real(Complex(((pml_width-i-0.5)/pml_width))^m)
sigma_m_x[size-(i-1)] = sigma_max * real(Complex(((pml_width-i)/pml_width))^m)
end
aex = exp(-sigma_x .* globals.imp0)-1
bex = exp(-sigma_x .* globals.imp0)
ahx = exp(-sigma_m_x .* globals.imp0)-1
bhx = exp(-sigma_m_x .* globals.imp0)
# arrays
p_hy = zeros(size);
p_ez = zeros(size);
# output params
ez_snapshot = Array{Any}(num_snaps);
hy_snapshot = Array{Any}(num_snaps);
refl = 0.0;
reflection_counter = zeros(num_snaps);
refl_counter_pos = 20;
trans = 0.0;
transmission_counter = zeros(num_snaps);
trans_counter_pos = 160;
In [34]:
# Time steps
for time in 1:endTime
# Incident
# ez_inc, hy_inc = sources.gaussian_source(50, time);
delay = 30.
width = 100.
ez_inc = exp(-(time + 0.5 - (-0.5) - delay) * (time + 0.5 - (-0.5) - delay) / width);
hy_inc = exp(-(time - delay) * (time - delay) / width);
#
# CPML
#
for i in 1:size-1
p_hy[i] = bhx[i]*p_hy[i] + ahx[i]*(ez[i+1] - ez[i])
end
for i in 2:size
p_ez[i] = bex[i]*p_ez[i] + aex[i]*(hy[i] - hy[i-1])
end
#
# Magnetic
#
# Interior update
for i = 1:size-1
hy[i] = chyh[i] * hy[i] + chye[i] * (ez[i+1] - ez[i]) / globals.imp0 / mu[i]
end
# TFSF
hy[49] -= hy_inc / globals.imp0 / mu[49]
# CPML
for i in 1:size-1
hy[i] += p_hy[i]/globals.imp0/mu[i]
end
#
# Electric
#
# Interior update
for i = 2:size
ez[i] = ceze[i] * ez[i] + cezh[i] * (hy[i] - hy[i-1]) * globals.imp0 / eps[i]
end
# TFSF
ez[50] += ez_inc / eps[50]
# ABC Left
boundaries.first_order_diff_abc!(ez, 1, false)
# CPML Right
for i in 2:size
ez[i] += p_ez[i]*globals.imp0/eps[i]
end
refl += (ez[refl_counter_pos])^2;
trans +=(ez[trans_counter_pos])^2;
# Snapshots for animation
if mod(time, snap_step) == 0
t = div(time,snap_step)
ez_snapshot[t] = (time, copy(ez))
hy_snapshot[t] = (time, copy(hy).*globals.imp0)
# Counters
reflection_counter[t] = refl;
transmission_counter[t] = trans;
end
end
In [35]:
anim = Animation()
for i = 1:num_snaps
p = plot(1:size, ez_snapshot[i][2], lab="Ez")
plot!(1:size, hy_snapshot[i][2], lab="Hy*imp0")
time = ez_snapshot[i][1]
plot!(ann=[(150, 1.5, "time =$time")])
plot!(ann=[(0, 1.1, "Mur ABC")])
plot!(ann=[(80, 1.2, "Eps = $eps0")])
plot!(ann=[(100, 1.1, "Eps = $eps1")])
plot!([100, 100], [-2, 2])
plot!(ann=[(180, 1.1, "CPML")])
R = reflection_counter[i]
plot!(ann=[(refl_counter_pos, -1.1, "R = $R")])
plot!([refl_counter_pos, refl_counter_pos], [-1, 1])
T = transmission_counter[i]
plot!(ann=[(trans_counter_pos, -1.1, "T = $T")])
plot!([trans_counter_pos, trans_counter_pos], [-1, 1])
plot!(xlims=(1, 200), ylims=(-2, 2))
frame(anim, p)
end
gif(anim, "./10_reflection.gif", fps=15)
Out[35]:
In [36]:
R = reflection_counter[end] / (transmission_counter[end] + reflection_counter[end])
T = transmission_counter[end] / (transmission_counter[end] + reflection_counter[end])
print("T = $T\n")
print("R = $R\n")
In [ ]: