10_CNN_MNIST_CUDA


In [2]:
import torch 
import torch.nn as nn
import torchvision.datasets as dsets
import torchvision.transforms as transforms
from torch.autograd import Variable
import os

In [3]:
# Hyper Parameters
num_epochs = 5
batch_size = 100
learning_rate = 0.001

# MNIST Dataset
train_dataset = dsets.MNIST(root='./data/',
                            train=True, 
                            transform=transforms.ToTensor(),
                            download=True)

test_dataset = dsets.MNIST(root='./data/',
                           train=False, 
                           transform=transforms.ToTensor())

# Data Loader (Input Pipeline)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                                           batch_size=batch_size, 
                                           shuffle=True)

test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
                                          batch_size=batch_size, 
                                          shuffle=False)

In [4]:
# CNN Model (2 conv layer)
class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()
        self.layer1 = nn.Sequential(
            nn.Conv2d(1, 16, kernel_size=5, padding=2),
            nn.BatchNorm2d(16),
            nn.ReLU(),
            nn.MaxPool2d(2))
        self.layer2 = nn.Sequential(
            nn.Conv2d(16, 32, kernel_size=5, padding=2),
            nn.BatchNorm2d(32),
            nn.ReLU(),
            nn.MaxPool2d(2))
        self.fc = nn.Linear(7*7*32, 10)
        
    def forward(self, x):
        out = self.layer1(x)
        out = self.layer2(out)
        out = out.view(out.size(0), -1)
        out = self.fc(out)
        return out
        
cnn = CNN()
cnn = cnn.cuda()

In [9]:
if os.path.isfile('cnn.pkl'):
    cnn.load_state_dict(torch.load('cnn.pkl'))    # Load the Trained Model
    
else:
    # Loss and Optimizer
    criterion = nn.CrossEntropyLoss()
    optimizer = torch.optim.Adam(cnn.parameters(), lr=learning_rate)

    # Train the Model
    for epoch in range(num_epochs):
        for i, (images, labels) in enumerate(train_loader):
            images = Variable(images).cuda()
            labels = Variable(labels).cuda()

            # Forward + Backward + Optimize
            optimizer.zero_grad()
            outputs = cnn(images)
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()

            if (i+1) % 100 == 0:
                print ('Epoch [%d/%d], Iter [%d/%d] Loss: %.4f' 
                       %(epoch+1, num_epochs, i+1, len(train_dataset)//batch_size, loss.data[0]))
    
    
    if not os.path.isfile('cnn.pkl'):
        torch.save(cnn.state_dict(), 'cnn.pkl') # Save the Trained Model


Epoch [1/5], Iter [100/600] Loss: 0.0024
Epoch [1/5], Iter [200/600] Loss: 0.0115
Epoch [1/5], Iter [300/600] Loss: 0.0274
Epoch [1/5], Iter [400/600] Loss: 0.0422
Epoch [1/5], Iter [500/600] Loss: 0.0100
Epoch [1/5], Iter [600/600] Loss: 0.0083
Epoch [2/5], Iter [100/600] Loss: 0.0013
Epoch [2/5], Iter [200/600] Loss: 0.0176
Epoch [2/5], Iter [300/600] Loss: 0.0041
Epoch [2/5], Iter [400/600] Loss: 0.0044
Epoch [2/5], Iter [500/600] Loss: 0.0338
Epoch [2/5], Iter [600/600] Loss: 0.0155
Epoch [3/5], Iter [100/600] Loss: 0.0023
Epoch [3/5], Iter [200/600] Loss: 0.0041
Epoch [3/5], Iter [300/600] Loss: 0.0071
Epoch [3/5], Iter [400/600] Loss: 0.0021
Epoch [3/5], Iter [500/600] Loss: 0.0019
Epoch [3/5], Iter [600/600] Loss: 0.0072
Epoch [4/5], Iter [100/600] Loss: 0.0088
Epoch [4/5], Iter [200/600] Loss: 0.0010
Epoch [4/5], Iter [300/600] Loss: 0.0352
Epoch [4/5], Iter [400/600] Loss: 0.0047
Epoch [4/5], Iter [500/600] Loss: 0.0026
Epoch [4/5], Iter [600/600] Loss: 0.0210
Epoch [5/5], Iter [100/600] Loss: 0.0005
Epoch [5/5], Iter [200/600] Loss: 0.0014
Epoch [5/5], Iter [300/600] Loss: 0.0354
Epoch [5/5], Iter [400/600] Loss: 0.2145
Epoch [5/5], Iter [500/600] Loss: 0.0041
Epoch [5/5], Iter [600/600] Loss: 0.0008

In [10]:
# Test the Model
cnn.eval()  # Change model to 'eval' mode (BN uses moving mean/var).
correct = 0
total = 0
for images, labels in test_loader:
    images = Variable(images).cuda()
    outputs = cnn(images)
    _, predicted = torch.max(outputs.data, 1)
    total += labels.size(0)
    correct += (predicted.cpu() == labels).sum()

print('Test Accuracy of the model on the 10000 test images: %f %%' % (100 * correct / total))


Test Accuracy of the model on the 10000 test images: 99.050000 %

In [ ]: