In [1]:
import pandas as pd
titanic=pd.read_csv('http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic.txt')
titanic.head()
Out[1]:
In [2]:
titanic.info()
In [3]:
X=titanic[['pclass','age','sex']]
y=titanic['survived']
X.info()
In [5]:
X['age'].fillna(X['age'].mean(),inplace=True)
X.info()
In [6]:
from sklearn.cross_validation import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.25,random_state=33)
from sklearn.feature_extraction import DictVectorizer
vec=DictVectorizer(sparse=False)
X_train=vec.fit_transform(X_train.to_dict(orient='record'))
print vec.feature_names_
In [8]:
X_test=vec.transform(X_test.to_dict(orient='record'))
from sklearn.tree import DecisionTreeClassifier
dtc=DecisionTreeClassifier()
dtc.fit(X_train,y_train)
y_predict=dtc.predict(X_test)
In [9]:
from sklearn.metrics import classification_report
print dtc.score(X_test,y_test)
print classification_report(y_predict,y_test,target_names=['died','suivived'])