In [2]:
import pandas as pd
import numpy as np
In [3]:
column_names=['sample code number','clump thickness','uniformity of cell size','uniformity of cell shape','marginal adhesion',
'single epithelial cell size','bare nuclei','bland chromatin', 'normal nucleoli','mitoses','class']
data = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data',
names=column_names)
In [4]:
data = data.replace(to_replace='?',value=np.nan)
data=data.dropna(how='any')
data.shape
Out[4]:
In [10]:
# help(pd)
# pd.__file__
# import sklearn
# sklearn.__file__
# help(sklearn)
In [5]:
from sklearn.cross_validation import train_test_split
X_train,X_test,y_train,y_test=train_test_split(data[column_names[1:10]],data[column_names[10]],test_size=0.25,random_state=33)
In [6]:
y_train.value_counts()
Out[6]:
In [7]:
y_test.value_counts()
Out[7]:
In [8]:
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.linear_model import SGDClassifier
In [9]:
ss=StandardScaler()
X_train=ss.fit_transform(X_train)
X_test=ss.transform(X_test)
In [10]:
lr=LogisticRegression()
sgdc=SGDClassifier()
lr.fit(X_train,y_train)
lr_y_predict=lr.predict(X_test)
sgdc.fit(X_train,y_train)
sgdc_y_predict=sgdc.predict(X_test)
In [12]:
from sklearn.metrics import classification_report
print 'Accuracy of LR Classifier:', lr.score(X_test,y_test)
print classification_report(y_test,lr_y_predict,target_names=['Benign','Malignant'])
In [16]:
print 'Accuracy of SGC Classifier:', sgdc.score(X_test,y_test)
print classification_report(y_test,sgdc_y_predict,target_names=['Benign','Malignant'])