# Sentiment Classification & How To "Frame Problems" for a Neural Network

### What You Should Already Know

• neural networks, forward and back-propagation
• mean squared error
• and train/test splits

### Where to Get Help if You Need it

• Re-watch previous Udacity Lectures
• Leverage the recommended Course Reading Material - Grokking Deep Learning (40% Off: traskud17)
• Shoot me a tweet @iamtrask

### Tutorial Outline:

• Intro: The Importance of "Framing a Problem"
• Curate a Dataset
• Developing a "Predictive Theory"
• PROJECT 1: Quick Theory Validation
• Transforming Text to Numbers
• PROJECT 2: Creating the Input/Output Data
• Putting it all together in a Neural Network
• PROJECT 3: Building our Neural Network
• Understanding Neural Noise
• PROJECT 4: Making Learning Faster by Reducing Noise
• Analyzing Inefficiencies in our Network
• PROJECT 5: Making our Network Train and Run Faster
• Further Noise Reduction
• PROJECT 6: Reducing Noise by Strategically Reducing the Vocabulary
• Analysis: What's going on in the weights?

# Lesson: Curate a Dataset

``````

In [7]:

def pretty_print_review_and_label(i):
print(labels[i] + "\t:\t" + reviews[i][:80] + "...")

g = open('reviews.txt','r') # What we know!
g.close()

g = open('labels.txt','r') # What we WANT to know!
g.close()

``````
``````

In [8]:

len(reviews)

``````
``````

Out[8]:

25000

``````
``````

In [9]:

reviews[0]

``````
``````

Out[9]:

'bromwell high is a cartoon comedy . it ran at the same time as some other programs about school life  such as  teachers  . my   years in the teaching profession lead me to believe that bromwell high  s satire is much closer to reality than is  teachers  . the scramble to survive financially  the insightful students who can see right through their pathetic teachers  pomp  the pettiness of the whole situation  all remind me of the schools i knew and their students . when i saw the episode in which a student repeatedly tried to burn down the school  i immediately recalled . . . . . . . . . at . . . . . . . . . . high . a classic line inspector i  m here to sack one of your teachers . student welcome to bromwell high . i expect that many adults of my age think that bromwell high is far fetched . what a pity that it isn  t   '

``````
``````

In [10]:

labels[0]

``````
``````

Out[10]:

'POSITIVE'

``````

# Lesson: Develop a Predictive Theory

``````

In [11]:

print("labels.txt \t : \t reviews.txt\n")
pretty_print_review_and_label(2137)
pretty_print_review_and_label(12816)
pretty_print_review_and_label(6267)
pretty_print_review_and_label(21934)
pretty_print_review_and_label(5297)
pretty_print_review_and_label(4998)

``````
``````

labels.txt 	 : 	 reviews.txt

NEGATIVE	:	this movie is terrible but it has some good effects .  ...
POSITIVE	:	adrian pasdar is excellent is this film . he makes a fascinating woman .  ...
NEGATIVE	:	comment this movie is impossible . is terrible  very improbable  bad interpretat...
POSITIVE	:	excellent episode movie ala pulp fiction .  days   suicides . it doesnt get more...
NEGATIVE	:	if you haven  t seen this  it  s terrible . it is pure trash . i saw this about ...
POSITIVE	:	this schiffer guy is a real genius  the movie is of excellent quality and both e...

``````

# Project 1: Quick Theory Validation

``````

In [12]:

from collections import Counter
import numpy as np

``````
``````

In [13]:

positive_counts = Counter()
negative_counts = Counter()
total_counts = Counter()

``````
``````

In [14]:

for i in range(len(reviews)):
if(labels[i] == 'POSITIVE'):
for word in reviews[i].split(" "):
positive_counts[word] += 1
total_counts[word] += 1
else:
for word in reviews[i].split(" "):
negative_counts[word] += 1
total_counts[word] += 1

``````
``````

In [15]:

positive_counts.most_common()

``````
``````

Out[15]:

[('', 550468),
('the', 173324),
('.', 159654),
('and', 89722),
('a', 83688),
('of', 76855),
('to', 66746),
('is', 57245),
('in', 50215),
('br', 49235),
('it', 48025),
('i', 40743),
('that', 35630),
('this', 35080),
('s', 33815),
('as', 26308),
('with', 23247),
('for', 22416),
('was', 21917),
('film', 20937),
('but', 20822),
('movie', 19074),
('his', 17227),
('on', 17008),
('you', 16681),
('he', 16282),
('are', 14807),
('not', 14272),
('t', 13720),
('one', 13655),
('have', 12587),
('be', 12416),
('by', 11997),
('all', 11942),
('who', 11464),
('an', 11294),
('at', 11234),
('from', 10767),
('her', 10474),
('they', 9895),
('has', 9186),
('so', 9154),
('like', 9038),
('very', 8305),
('out', 8134),
('there', 8057),
('she', 7779),
('what', 7737),
('or', 7732),
('good', 7720),
('more', 7521),
('when', 7456),
('some', 7441),
('if', 7285),
('just', 7152),
('can', 7001),
('story', 6780),
('time', 6515),
('my', 6488),
('great', 6419),
('well', 6405),
('up', 6321),
('which', 6267),
('their', 6107),
('see', 6026),
('also', 5550),
('we', 5531),
('really', 5476),
('would', 5400),
('will', 5218),
('me', 5167),
('only', 5137),
('him', 5018),
('even', 4964),
('most', 4864),
('other', 4858),
('were', 4782),
('first', 4755),
('than', 4736),
('much', 4685),
('its', 4622),
('no', 4574),
('into', 4544),
('people', 4479),
('best', 4319),
('love', 4301),
('get', 4272),
('how', 4213),
('life', 4199),
('been', 4189),
('because', 4079),
('way', 4036),
('do', 3941),
('films', 3813),
('them', 3805),
('after', 3800),
('many', 3766),
('two', 3733),
('too', 3659),
('think', 3655),
('movies', 3586),
('characters', 3560),
('character', 3514),
('don', 3468),
('man', 3460),
('show', 3432),
('watch', 3424),
('seen', 3414),
('then', 3358),
('little', 3341),
('still', 3340),
('make', 3303),
('could', 3237),
('never', 3226),
('being', 3217),
('where', 3173),
('does', 3069),
('over', 3017),
('any', 3002),
('while', 2899),
('know', 2833),
('did', 2790),
('years', 2758),
('here', 2740),
('ever', 2734),
('end', 2696),
('these', 2694),
('such', 2590),
('real', 2568),
('scene', 2567),
('back', 2547),
('those', 2485),
('though', 2475),
('off', 2463),
('new', 2458),
('your', 2453),
('go', 2440),
('acting', 2437),
('plot', 2432),
('world', 2429),
('scenes', 2427),
('say', 2414),
('through', 2409),
('makes', 2390),
('better', 2381),
('now', 2368),
('work', 2346),
('young', 2343),
('old', 2311),
('ve', 2307),
('find', 2272),
('both', 2248),
('before', 2177),
('us', 2162),
('again', 2158),
('series', 2153),
('quite', 2143),
('something', 2135),
('cast', 2133),
('should', 2121),
('part', 2098),
('always', 2088),
('lot', 2087),
('another', 2075),
('actors', 2047),
('director', 2040),
('family', 2032),
('between', 2016),
('own', 2016),
('m', 1998),
('may', 1997),
('same', 1972),
('role', 1967),
('watching', 1966),
('every', 1954),
('funny', 1953),
('doesn', 1935),
('performance', 1928),
('few', 1918),
('look', 1900),
('re', 1884),
('why', 1855),
('things', 1849),
('times', 1832),
('big', 1815),
('however', 1795),
('actually', 1790),
('action', 1789),
('going', 1783),
('bit', 1757),
('comedy', 1742),
('down', 1740),
('music', 1738),
('must', 1728),
('take', 1709),
('saw', 1692),
('long', 1690),
('right', 1688),
('fun', 1686),
('fact', 1684),
('excellent', 1683),
('around', 1674),
('didn', 1672),
('without', 1671),
('thing', 1662),
('thought', 1639),
('got', 1635),
('each', 1630),
('day', 1614),
('feel', 1597),
('seems', 1596),
('come', 1594),
('done', 1586),
('beautiful', 1580),
('especially', 1572),
('played', 1571),
('almost', 1566),
('want', 1562),
('yet', 1556),
('give', 1553),
('pretty', 1549),
('last', 1543),
('since', 1519),
('different', 1504),
('although', 1501),
('gets', 1490),
('true', 1487),
('interesting', 1481),
('job', 1470),
('enough', 1455),
('our', 1454),
('shows', 1447),
('horror', 1441),
('woman', 1439),
('tv', 1400),
('probably', 1398),
('father', 1395),
('original', 1393),
('girl', 1390),
('point', 1379),
('plays', 1378),
('wonderful', 1372),
('far', 1358),
('course', 1358),
('john', 1350),
('rather', 1340),
('isn', 1328),
('ll', 1326),
('later', 1324),
('dvd', 1324),
('whole', 1310),
('war', 1310),
('d', 1307),
('found', 1306),
('away', 1306),
('screen', 1305),
('nothing', 1300),
('year', 1297),
('once', 1296),
('hard', 1294),
('together', 1280),
('set', 1277),
('am', 1277),
('having', 1266),
('making', 1265),
('place', 1263),
('might', 1260),
('comes', 1260),
('sure', 1253),
('american', 1248),
('play', 1245),
('kind', 1244),
('perfect', 1242),
('takes', 1242),
('performances', 1237),
('himself', 1230),
('worth', 1221),
('everyone', 1221),
('anyone', 1214),
('actor', 1203),
('three', 1201),
('wife', 1196),
('classic', 1192),
('goes', 1186),
('ending', 1178),
('version', 1168),
('star', 1149),
('enjoy', 1146),
('book', 1142),
('nice', 1132),
('everything', 1128),
('during', 1124),
('put', 1118),
('seeing', 1111),
('least', 1102),
('house', 1100),
('high', 1095),
('watched', 1094),
('loved', 1087),
('men', 1087),
('night', 1082),
('anything', 1075),
('believe', 1071),
('guy', 1071),
('top', 1063),
('amazing', 1058),
('hollywood', 1056),
('looking', 1053),
('main', 1044),
('definitely', 1043),
('gives', 1031),
('home', 1029),
('seem', 1028),
('episode', 1023),
('audience', 1020),
('sense', 1020),
('truly', 1017),
('special', 1011),
('second', 1009),
('short', 1009),
('fan', 1009),
('mind', 1005),
('human', 1001),
('recommend', 999),
('full', 996),
('black', 995),
('help', 991),
('along', 989),
('trying', 987),
('small', 986),
('death', 985),
('friends', 981),
('remember', 974),
('often', 970),
('said', 966),
('favorite', 962),
('heart', 959),
('early', 957),
('left', 956),
('until', 955),
('script', 954),
('let', 954),
('maybe', 937),
('today', 936),
('live', 934),
('less', 934),
('moments', 933),
('others', 929),
('brilliant', 926),
('shot', 925),
('liked', 923),
('become', 916),
('won', 915),
('used', 910),
('style', 907),
('mother', 895),
('lives', 894),
('came', 893),
('stars', 890),
('cinema', 889),
('looks', 885),
('perhaps', 884),
('enjoyed', 879),
('boy', 875),
('drama', 873),
('highly', 871),
('given', 870),
('playing', 867),
('use', 864),
('next', 859),
('women', 858),
('fine', 857),
('effects', 856),
('kids', 854),
('entertaining', 853),
('need', 852),
('line', 850),
('works', 848),
('someone', 847),
('mr', 836),
('simply', 835),
('picture', 833),
('children', 833),
('face', 831),
('keep', 831),
('friend', 831),
('dark', 830),
('overall', 828),
('certainly', 828),
('minutes', 827),
('wasn', 824),
('history', 822),
('finally', 820),
('couple', 816),
('against', 815),
('son', 809),
('understand', 808),
('lost', 807),
('michael', 805),
('else', 801),
('throughout', 798),
('fans', 797),
('city', 792),
('reason', 789),
('written', 787),
('production', 787),
('several', 784),
('school', 783),
('based', 781),
('rest', 781),
('try', 780),
('hope', 775),
('strong', 768),
('white', 765),
('tell', 759),
('itself', 758),
('half', 753),
('person', 749),
('sometimes', 746),
('past', 744),
('start', 744),
('genre', 743),
('beginning', 739),
('final', 739),
('town', 738),
('art', 734),
('humor', 732),
('game', 732),
('yes', 731),
('idea', 731),
('late', 730),
('becomes', 729),
('despite', 729),
('able', 726),
('case', 726),
('money', 723),
('child', 721),
('completely', 721),
('side', 719),
('camera', 716),
('getting', 714),
('soon', 702),
('under', 700),
('viewer', 699),
('age', 697),
('days', 696),
('stories', 696),
('felt', 694),
('simple', 694),
('roles', 693),
('video', 688),
('name', 683),
('either', 683),
('doing', 677),
('turns', 674),
('wants', 671),
('close', 671),
('title', 669),
('wrong', 668),
('went', 666),
('james', 665),
('evil', 659),
('budget', 657),
('episodes', 657),
('relationship', 655),
('fantastic', 653),
('piece', 653),
('david', 651),
('turn', 648),
('murder', 646),
('parts', 645),
('brother', 644),
('absolutely', 643),
('experience', 642),
('eyes', 641),
('sex', 638),
('direction', 637),
('called', 637),
('directed', 636),
('lines', 634),
('behind', 633),
('sort', 632),
('actress', 631),
('oscar', 628),
('including', 627),
('example', 627),
('known', 625),
('musical', 625),
('chance', 621),
('score', 620),
('feeling', 619),
('hit', 619),
('voice', 615),
('moment', 612),
('living', 612),
('low', 610),
('supporting', 610),
('ago', 609),
('themselves', 608),
('reality', 605),
('hilarious', 605),
('jack', 604),
('told', 603),
('hand', 601),
('quality', 600),
('moving', 600),
('dialogue', 600),
('song', 599),
('happy', 599),
('matter', 598),
('paul', 598),
('light', 594),
('future', 593),
('entire', 592),
('finds', 591),
('gave', 589),
('laugh', 587),
('released', 586),
('expect', 584),
('fight', 581),
('particularly', 580),
('cinematography', 579),
('police', 579),
('whose', 578),
('type', 578),
('sound', 578),
('view', 573),
('enjoyable', 573),
('number', 572),
('romantic', 572),
('husband', 572),
('daughter', 572),
('documentary', 571),
('self', 570),
('superb', 569),
('modern', 569),
('took', 569),
('robert', 569),
('mean', 566),
('shown', 563),
('coming', 561),
('important', 560),
('king', 559),
('leave', 559),
('change', 558),
('somewhat', 555),
('wanted', 555),
('tells', 554),
('events', 552),
('run', 552),
('career', 552),
('country', 552),
('heard', 550),
('season', 550),
('greatest', 549),
('girls', 549),
('etc', 547),
('care', 546),
('starts', 545),
('english', 542),
('killer', 541),
('tale', 540),
('guys', 540),
('totally', 540),
('animation', 540),
('usual', 539),
('miss', 535),
('opinion', 535),
('easy', 531),
('violence', 531),
('songs', 530),
('british', 528),
('says', 526),
('realistic', 525),
('writing', 524),
('writer', 522),
('act', 522),
('comic', 521),
('thriller', 519),
('television', 517),
('power', 516),
('ones', 515),
('kid', 514),
('york', 513),
('novel', 513),
('alone', 512),
('problem', 512),
('attention', 509),
('involved', 508),
('kill', 507),
('extremely', 507),
('seemed', 506),
('hero', 505),
('french', 505),
('rock', 504),
('stuff', 501),
('wish', 499),
('begins', 498),
('taken', 497),
('ways', 496),
('richard', 495),
('knows', 494),
('atmosphere', 493),
('similar', 491),
('surprised', 491),
('taking', 491),
('car', 491),
('george', 490),
('perfectly', 490),
('across', 489),
('team', 489),
('eye', 489),
('sequence', 489),
('room', 488),
('due', 488),
('among', 488),
('serious', 488),
('powerful', 488),
('strange', 487),
('order', 487),
('cannot', 487),
('b', 487),
('beauty', 486),
('famous', 485),
('happened', 484),
('tries', 484),
('herself', 484),
('myself', 484),
('class', 483),
('four', 482),
('cool', 481),
('release', 479),
('anyway', 479),
('theme', 479),
('opening', 478),
('entertainment', 477),
('slow', 475),
('ends', 475),
('unique', 475),
('exactly', 475),
('easily', 474),
('level', 474),
('o', 474),
('red', 474),
('interest', 472),
('happen', 471),
('crime', 470),
('viewing', 468),
('sets', 467),
('memorable', 467),
('stop', 466),
('group', 466),
('problems', 463),
('dance', 463),
('working', 463),
('sister', 463),
('message', 463),
('knew', 462),
('mystery', 461),
('nature', 461),
('bring', 460),
('believable', 459),
('thinking', 459),
('brought', 459),
('mostly', 458),
('disney', 457),
('couldn', 457),
('society', 456),
('within', 455),
('blood', 454),
('parents', 453),
('upon', 453),
('viewers', 453),
('meets', 452),
('form', 452),
('peter', 452),
('tom', 452),
('usually', 452),
('soundtrack', 452),
('local', 450),
('certain', 448),
('follow', 448),
('whether', 447),
('possible', 446),
('emotional', 445),
('killed', 444),
('above', 444),
('de', 444),
('god', 443),
('middle', 443),
('needs', 442),
('happens', 442),
('flick', 442),
('masterpiece', 441),
('period', 440),
('major', 440),
('named', 439),
('haven', 439),
('particular', 438),
('th', 438),
('earth', 437),
('feature', 437),
('stand', 436),
('words', 435),
('typical', 435),
('elements', 433),
('obviously', 433),
('romance', 431),
('jane', 430),
('yourself', 427),
('showing', 427),
('brings', 426),
('fantasy', 426),
('guess', 423),
('america', 423),
('unfortunately', 422),
('huge', 422),
('indeed', 421),
('running', 421),
('talent', 420),
('stage', 419),
('started', 418),
('sweet', 417),
('japanese', 417),
('poor', 416),
('deal', 416),
('incredible', 413),
('personal', 413),
('fast', 412),
('became', 410),
('deep', 410),
('hours', 409),
('giving', 408),
('nearly', 408),
('dream', 408),
('clearly', 407),
('turned', 407),
('obvious', 406),
('near', 406),
('cut', 405),
('surprise', 405),
('era', 404),
('body', 404),
('hour', 403),
('female', 403),
('five', 403),
('note', 399),
('learn', 398),
('truth', 398),
('except', 397),
('feels', 397),
('match', 397),
('tony', 397),
('filmed', 394),
('clear', 394),
('complete', 394),
('street', 393),
('eventually', 393),
('keeps', 393),
('older', 393),
('lots', 393),
('william', 391),
('stewart', 391),
('fall', 390),
('joe', 390),
('meet', 390),
('unlike', 389),
('talking', 389),
('shots', 389),
('rating', 389),
('difficult', 389),
('dramatic', 388),
('means', 388),
('situation', 386),
('wonder', 386),
('present', 386),
('appears', 386),
('subject', 386),
('general', 383),
('sequences', 383),
('lee', 383),
('points', 382),
('earlier', 382),
('gone', 379),
('check', 379),
('suspense', 378),
('recommended', 378),
('ten', 378),
('third', 377),
('talk', 375),
('leaves', 375),
('beyond', 375),
('portrayal', 374),
('beautifully', 373),
('single', 372),
('bill', 372),
('plenty', 371),
('word', 371),
('whom', 370),
('falls', 370),
('scary', 369),
('non', 369),
('figure', 369),
('battle', 369),
('using', 368),
('return', 368),
('doubt', 367),
('hear', 366),
('solid', 366),
('success', 366),
('jokes', 365),
('oh', 365),
('touching', 365),
('political', 365),
('hell', 364),
('awesome', 364),
('boys', 364),
('sexual', 362),
('recently', 362),
('dog', 362),
('wouldn', 361),
('straight', 361),
('features', 361),
('forget', 360),
('setting', 360),
('lack', 360),
('married', 359),
('mark', 359),
('social', 357),
('interested', 356),
('actual', 355),
('terrific', 355),
('sees', 355),
('brothers', 355),
('move', 354),
('call', 354),
('various', 353),
('theater', 353),
('dr', 353),
('animated', 352),
('western', 351),
('baby', 350),
('space', 350),
('disappointed', 348),
('portrayed', 346),
('aren', 346),
('screenplay', 345),
('smith', 345),
('towards', 344),
('hate', 344),
('noir', 343),
('outstanding', 342),
('decent', 342),
('kelly', 342),
('directors', 341),
('journey', 341),
('none', 340),
('looked', 340),
('effective', 340),
('storyline', 339),
('caught', 339),
('sci', 339),
('fi', 339),
('cold', 339),
('mary', 339),
('rich', 338),
('charming', 338),
('popular', 337),
('rare', 337),
('manages', 337),
('harry', 337),
('spirit', 336),
('appreciate', 335),
('open', 335),
('moves', 334),
('basically', 334),
('acted', 334),
('inside', 333),
('boring', 333),
('century', 333),
('mention', 333),
('deserves', 333),
('subtle', 333),
('pace', 333),
('familiar', 332),
('background', 332),
('ben', 331),
('creepy', 330),
('supposed', 330),
('secret', 329),
('die', 328),
('jim', 328),
('question', 327),
('effect', 327),
('natural', 327),
('impressive', 326),
('rate', 326),
('language', 326),
('saying', 325),
('intelligent', 325),
('telling', 324),
('realize', 324),
('material', 324),
('scott', 324),
('singing', 323),
('dancing', 322),
('visual', 321),
('imagine', 321),
('kept', 320),
('office', 320),
('uses', 319),
('pure', 318),
('wait', 318),
('stunning', 318),
('review', 317),
('previous', 317),
('copy', 317),
('seriously', 317),
('create', 316),
('hot', 316),
('created', 316),
('magic', 316),
('somehow', 316),
('stay', 315),
('attempt', 315),
('escape', 315),
('crazy', 315),
('air', 315),
('frank', 315),
('hands', 314),
('filled', 313),
('expected', 312),
('average', 312),
('surprisingly', 312),
('complex', 311),
('quickly', 310),
('successful', 310),
('studio', 310),
('plus', 309),
('male', 309),
('co', 307),
('images', 306),
('casting', 306),
('following', 306),
('minute', 306),
('exciting', 306),
('members', 305),
('follows', 305),
('themes', 305),
('german', 305),
('reasons', 305),
('e', 305),
('touch', 304),
('edge', 304),
('free', 304),
('cute', 304),
('genius', 304),
('outside', 303),
('reviews', 302),
('ok', 302),
('younger', 302),
('fighting', 301),
('odd', 301),
('master', 301),
('recent', 300),
('thanks', 300),
('break', 300),
('comment', 300),
('apart', 299),
('emotions', 298),
('lovely', 298),
('begin', 298),
('doctor', 297),
('party', 297),
('italian', 297),
('la', 296),
('missed', 296),
...]

``````
``````

In [16]:

pos_neg_ratios = Counter()

for term,cnt in list(total_counts.most_common()):
if(cnt > 100):
pos_neg_ratio = positive_counts[term] / float(negative_counts[term]+1)
pos_neg_ratios[term] = pos_neg_ratio

for word,ratio in pos_neg_ratios.most_common():
if(ratio > 1):
pos_neg_ratios[word] = np.log(ratio)
else:
pos_neg_ratios[word] = -np.log((1 / (ratio+0.01)))

``````
``````

In [17]:

# words most frequently seen in a review with a "POSITIVE" label
pos_neg_ratios.most_common()

``````
``````

Out[17]:

[('edie', 4.6913478822291435),
('paulie', 4.0775374439057197),
('felix', 3.1527360223636558),
('polanski', 2.8233610476132043),
('matthau', 2.8067217286092401),
('victoria', 2.6810215287142909),
('mildred', 2.6026896854443837),
('gandhi', 2.5389738710582761),
('flawless', 2.451005098112319),
('superbly', 2.2600254785752498),
('perfection', 2.1594842493533721),
('astaire', 2.1400661634962708),
('captures', 2.0386195471595809),
('voight', 2.0301704926730531),
('wonderfully', 2.0218960560332353),
('powell', 1.9783454248084671),
('brosnan', 1.9547990964725592),
('lily', 1.9203768470501485),
('bakshi', 1.9029851043382795),
('lincoln', 1.9014583864844796),
('refreshing', 1.8551812956655511),
('breathtaking', 1.8481124057791867),
('bourne', 1.8478489358790986),
('lemmon', 1.8458266904983307),
('delightful', 1.8002701588959635),
('flynn', 1.7996646487351682),
('andrews', 1.7764919970972666),
('homer', 1.7692866133759964),
('beautifully', 1.7626953362841438),
('soccer', 1.7578579175523736),
('elvira', 1.7397031072720019),
('underrated', 1.7197859696029656),
('gripping', 1.7165360479904674),
('superb', 1.7091514458966952),
('delight', 1.6714733033535532),
('welles', 1.6677068205580761),
('sinatra', 1.6389967146756448),
('touching', 1.637217476541176),
('timeless', 1.62924053973028),
('macy', 1.6211339521972916),
('unforgettable', 1.6177367152487956),
('favorites', 1.6158688027643908),
('stewart', 1.6119987332957739),
('sullivan', 1.6094379124341003),
('extraordinary', 1.6094379124341003),
('hartley', 1.6094379124341003),
('brilliantly', 1.5950491749820008),
('friendship', 1.5677652160335325),
('wonderful', 1.5645425925262093),
('palma', 1.5553706911638245),
('magnificent', 1.54663701119507),
('finest', 1.5462590108125689),
('jackie', 1.5439233053234738),
('ritter', 1.5404450409471491),
('tremendous', 1.5184661342283736),
('freedom', 1.5091151908062312),
('fantastic', 1.5048433868558566),
('terrific', 1.5026699370083942),
('noir', 1.493925025312256),
('sidney', 1.493925025312256),
('outstanding', 1.4910053152089213),
('pleasantly', 1.4894785973551214),
('mann', 1.4894785973551214),
('nancy', 1.488077055429833),
('marie', 1.4825711915553104),
('marvelous', 1.4739999415389962),
('excellent', 1.4647538505723599),
('ruth', 1.4596256342054401),
('stanwyck', 1.4412101187160054),
('widmark', 1.4350845252893227),
('splendid', 1.4271163556401458),
('chan', 1.423108334242607),
('exceptional', 1.4201959127955721),
('tender', 1.410986973710262),
('gentle', 1.4078005663408544),
('poignant', 1.4022947024663317),
('gem', 1.3932148039644643),
('amazing', 1.3919815802404802),
('chilling', 1.3862943611198906),
('fisher', 1.3862943611198906),
('davies', 1.3862943611198906),
('captivating', 1.3862943611198906),
('darker', 1.3652409519220583),
('april', 1.3499267169490159),
('kelly', 1.3461743673304654),
('blake', 1.3418425985490567),
('overlooked', 1.329135947279942),
('ralph', 1.32818673031261),
('bette', 1.3156767939059373),
('hoffman', 1.3150668518315229),
('cole', 1.3121863889661687),
('shines', 1.3049487216659381),
('powerful', 1.2999662776313934),
('notch', 1.2950456896547455),
('remarkable', 1.2883688239495823),
('pitt', 1.286210902562908),
('winters', 1.2833463918674481),
('vivid', 1.2762934659055623),
('gritty', 1.2757524867200667),
('giallo', 1.2745029551317739),
('portrait', 1.2704625455947689),
('innocence', 1.2694300209805796),
('psychiatrist', 1.2685113254635072),
('favorite', 1.2668956297860055),
('ensemble', 1.2656663733312759),
('stunning', 1.2622417124499117),
('burns', 1.259880436264232),
('garbo', 1.258954938743289),
('barbara', 1.2580400255962119),
('philip', 1.2527629684953681),
('panic', 1.2527629684953681),
('holly', 1.2527629684953681),
('carol', 1.2481440226390734),
('perfect', 1.246742480713785),
('appreciated', 1.2462482874741743),
('favourite', 1.2411123512753928),
('journey', 1.2367626271489269),
('rural', 1.235471471385307),
('bond', 1.2321436812926323),
('builds', 1.2305398317106577),
('brilliant', 1.2287554137664785),
('brooklyn', 1.2286654169163074),
('von', 1.225175011976539),
('recommended', 1.2163953243244932),
('unfolds', 1.2163953243244932),
('daniel', 1.20215296760895),
('perfectly', 1.1971931173405572),
('crafted', 1.1962507582320256),
('prince', 1.1939224684724346),
('troubled', 1.192138346678933),
('consequences', 1.1865810616140668),
('haunting', 1.1814999484738773),
('cinderella', 1.180052620608284),
('alexander', 1.1759989522835299),
('emotions', 1.1753049094563641),
('boxing', 1.1735135968412274),
('subtle', 1.1734135017508081),
('curtis', 1.1649873576129823),
('rare', 1.1566438362402944),
('loved', 1.1563661500586044),
('daughters', 1.1526795099383853),
('courage', 1.1438688802562305),
('dentist', 1.1426722784621401),
('highly', 1.1420208631618658),
('nominated', 1.1409146683587992),
('tony', 1.1397491942285991),
('draws', 1.1325138403437911),
('everyday', 1.1306150197542835),
('contrast', 1.1284652518177909),
('cried', 1.1213405397456659),
('fabulous', 1.1210851445201684),
('ned', 1.120591195386885),
('fay', 1.120591195386885),
('emma', 1.1184149159642893),
('sensitive', 1.113318436057805),
('smooth', 1.1089750757036563),
('dramas', 1.1080910326226534),
('today', 1.1050431789984001),
('helps', 1.1023091505494358),
('inspiring', 1.0986122886681098),
('jimmy', 1.0937696641923216),
('awesome', 1.0931328229034842),
('unique', 1.0881409888008142),
('tragic', 1.0871835928444868),
('intense', 1.0870514662670339),
('stellar', 1.0857088838322018),
('rival', 1.0822184788924332),
('provides', 1.0797081340289569),
('depression', 1.0782034170369026),
('shy', 1.0775588794702773),
('carrie', 1.076139432816051),
('blend', 1.0753554265038423),
('hank', 1.0736109864626924),
('diana', 1.0726368022648489),
('unexpected', 1.0722255334949147),
('achievement', 1.0668635903535293),
('bettie', 1.0663514264498881),
('happiness', 1.0632729222228008),
('glorious', 1.0608719606852626),
('davis', 1.0541605260972757),
('terrifying', 1.0525211814678428),
('beauty', 1.050410186850232),
('ideal', 1.0479685558493548),
('fears', 1.0467872208035236),
('hong', 1.0438040521731147),
('seasons', 1.0433496099930604),
('fascinating', 1.0414538748281612),
('carries', 1.0345904299031787),
('satisfying', 1.0321225473992768),
('definite', 1.0319209141694374),
('touched', 1.0296194171811581),
('greatest', 1.0248947127715422),
('creates', 1.0241097613701886),
('aunt', 1.023388867430522),
('walter', 1.022328983918479),
('spectacular', 1.0198314108149955),
('portrayal', 1.0189810189761024),
('ann', 1.0127808528183286),
('enterprise', 1.0116009116784799),
('musicals', 1.0096648026516135),
('deeply', 1.0094845087721023),
('incredible', 1.0061677561461084),
('mature', 1.0060195018402847),
('triumph', 0.99682959435816731),
('margaret', 0.99682959435816731),
('navy', 0.99493385919326827),
('harry', 0.99176919305006062),
('lucas', 0.990398704027877),
('sweet', 0.98966110487955483),
('joey', 0.98794672078059009),
('oscar', 0.98721905111049713),
('balance', 0.98649499054740353),
('warm', 0.98485340331145166),
('ages', 0.98449898190068863),
('guilt', 0.98082925301172619),
('glover', 0.98082925301172619),
('carrey', 0.98082925301172619),
('learns', 0.97881108885548895),
('unusual', 0.97788374278196932),
('sons', 0.97777581552483595),
('complex', 0.97761897738147796),
('essence', 0.97753435711487369),
('brazil', 0.9769153536905899),
('widow', 0.97650959186720987),
('solid', 0.97537964824416146),
('beautiful', 0.97326301262841053),
('holmes', 0.97246100334120955),
('awe', 0.97186058302896583),
('vhs', 0.97116734209998934),
('eerie', 0.97116734209998934),
('lonely', 0.96873720724669754),
('grim', 0.96873720724669754),
('sport', 0.96825047080486615),
('debut', 0.96508089604358704),
('destiny', 0.96343751029985703),
('thrillers', 0.96281074750904794),
('tears', 0.95977584381389391),
('rose', 0.95664202739772253),
('feelings', 0.95551144502743635),
('ginger', 0.95551144502743635),
('winning', 0.95471810900804055),
('stanley', 0.95387344302319799),
('cox', 0.95343027882361187),
('paris', 0.95278479030472663),
('heart', 0.95238806924516806),
('hooked', 0.95155887071161305),
('comfortable', 0.94803943018873538),
('mgm', 0.94446160884085151),
('masterpiece', 0.94155039863339296),
('themes', 0.94118828349588235),
('danny', 0.93967118051821874),
('anime', 0.93378388932167222),
('perry', 0.93328830824272613),
('joy', 0.93301752567946861),
('lovable', 0.93081883243706487),
('mysteries', 0.92953595862417571),
('hal', 0.92953595862417571),
('louis', 0.92871325187271225),
('charming', 0.92520609553210742),
('urban', 0.92367083917177761),
('allows', 0.92183091224977043),
('impact', 0.91815814604895041),
('italy', 0.91629073187415511),
('lifestyle', 0.91629073187415511),
('spy', 0.91289514287301687),
('treat', 0.91193342650519937),
('subsequent', 0.91056005716517008),
('kennedy', 0.90981821736853763),
('loving', 0.90967549275543591),
('surprising', 0.90937028902958128),
('quiet', 0.90648673177753425),
('winter', 0.90624039602065365),
('reveals', 0.90490540964902977),
('raw', 0.90445627422715225),
('funniest', 0.90078654533818991),
('norman', 0.89994159387262562),
('thief', 0.89874642222324552),
('season', 0.89827222637147675),
('secrets', 0.89794159320595857),
('colorful', 0.89705936994626756),
('highest', 0.8967461358011849),
('compelling', 0.89462923509297576),
('danes', 0.89248008318043659),
('castle', 0.88967708335606499),
('kudos', 0.88889175768604067),
('great', 0.88810470901464589),
('baseball', 0.88730319500090271),
('subtitles', 0.88730319500090271),
('bleak', 0.88730319500090271),
('winner', 0.88643776872447388),
('tragedy', 0.88563699078315261),
('todd', 0.88551907320740142),
('nicely', 0.87924946019380601),
('arthur', 0.87546873735389985),
('essential', 0.87373111745535925),
('gorgeous', 0.8731725250935497),
('fonda', 0.87294029100054127),
('eastwood', 0.87139541196626402),
('focuses', 0.87082835779739776),
('enjoyed', 0.87070195951624607),
('natural', 0.86997924506912838),
('intensity', 0.86835126958503595),
('witty', 0.86824103423244681),
('rob', 0.8642954367557748),
('worlds', 0.86377269759070874),
('health', 0.86113891179907498),
('magical', 0.85953791528170564),
('deeper', 0.85802182375017932),
('lucy', 0.85618680780444956),
('moving', 0.85566611005772031),
('lovely', 0.85290640004681306),
('purple', 0.8513711857748395),
('memorable', 0.84801189112086062),
('sings', 0.84729786038720367),
('craig', 0.84342938360928321),
('modesty', 0.84342938360928321),
('relate', 0.84326559685926517),
('episodes', 0.84223712084137292),
('strong', 0.84167135777060931),
('smith', 0.83959811108590054),
('tear', 0.83704136022001441),
('apartment', 0.83333115290549531),
('princess', 0.83290912293510388),
('disagree', 0.83290912293510388),
('kung', 0.83173334384609199),
('columbo', 0.82667857318446791),
('jake', 0.82667857318446791),
('hart', 0.82472353834866463),
('strength', 0.82417544296634937),
('realizes', 0.82360006895738058),
('dave', 0.8232003088081431),
('childhood', 0.82208086393583857),
('forbidden', 0.81989888619908913),
('tight', 0.81883539572344199),
('surreal', 0.8178506590609026),
('manager', 0.81770990320170756),
('dancer', 0.81574950265227764),
('studios', 0.81093021621632877),
('con', 0.81093021621632877),
('miike', 0.80821651034473263),
('realistic', 0.80807714723392232),
('explicit', 0.80792269515237358),
('kurt', 0.8060875917405409),
('deals', 0.80535917116687328),
('holds', 0.80493858654806194),
('carl', 0.80437281567016972),
('touches', 0.80396154690023547),
('gene', 0.80314807577427383),
('albert', 0.8027669055771679),
('abc', 0.80234647252493729),
('cry', 0.80011930011211307),
('sides', 0.7995275841185171),
('develops', 0.79850769621777162),
('eyre', 0.79850769621777162),
('dances', 0.79694397424158891),
('oscars', 0.79633141679517616),
('legendary', 0.79600456599965308),
('hearted', 0.79492987486988764),
('importance', 0.79492987486988764),
('portraying', 0.79356592830699269),
('impressed', 0.79258107754813223),
('waters', 0.79112758892014912),
('empire', 0.79078565012386137),
('edge', 0.789774016249017),
('jean', 0.78845736036427028),
('environment', 0.78845736036427028),
('sentimental', 0.7864791203521645),
('captured', 0.78623760362595729),
('styles', 0.78592891401091158),
('daring', 0.78592891401091158),
('frank', 0.78275933924963248),
('tense', 0.78275933924963248),
('backgrounds', 0.78275933924963248),
('matches', 0.78275933924963248),
('gothic', 0.78209466657644144),
('sharp', 0.7814397877056235),
('achieved', 0.78015855754957497),
('court', 0.77947526404844247),
('steals', 0.7789140023173704),
('rules', 0.77844476107184035),
('colors', 0.77684619943659217),
('reunion', 0.77318988823348167),
('covers', 0.77139937745969345),
('tale', 0.77010822169607374),
('rain', 0.7683706017975328),
('denzel', 0.76804848873306297),
('stays', 0.76787072675588186),
('blob', 0.76725515271366718),
('maria', 0.76214005204689672),
('conventional', 0.76214005204689672),
('fresh', 0.76158434211317383),
('midnight', 0.76096977689870637),
('landscape', 0.75852993982279704),
('animated', 0.75768570169751648),
('titanic', 0.75666058628227129),
('sunday', 0.75666058628227129),
('spring', 0.7537718023763802),
('cagney', 0.7537718023763802),
('enjoyable', 0.75246375771636476),
('immensely', 0.75198768058287868),
('sir', 0.7507762933965817),
('nevertheless', 0.75067102469813185),
('driven', 0.74994477895307854),
('performances', 0.74883252516063137),
('memories', 0.74721440183022114),
('simple', 0.74641420974143258),
('golden', 0.74533293373051557),
('leslie', 0.74533293373051557),
('lovers', 0.74497224842453125),
('relationship', 0.74484232345601786),
('supporting', 0.74357803418683721),
('che', 0.74262723782331497),
('packed', 0.7410032017375805),
('trek', 0.74021469141793106),
('provoking', 0.73840377214806618),
('strikes', 0.73759894313077912),
('depiction', 0.73682224406260699),
('emotional', 0.73678211645681524),
('secretary', 0.7366322924996842),
('influenced', 0.73511137965897755),
('florida', 0.73511137965897755),
('germany', 0.73288750920945944),
('brings', 0.73142936713096229),
('lewis', 0.73129894652432159),
('elderly', 0.73088750854279239),
('owner', 0.72743625403857748),
('streets', 0.72666987259858895),
('henry', 0.72642196944481741),
('portrays', 0.72593700338293632),
('bears', 0.7252354951114458),
('china', 0.72489587887452556),
('anger', 0.72439972406404984),
('society', 0.72433010799663333),
('available', 0.72415741730250549),
('best', 0.72347034060446314),
('bugs', 0.72270598280148979),
('magic', 0.71878961117328299),
('delivers', 0.71846498854423513),
('verhoeven', 0.71846498854423513),
('jim', 0.71783979315031676),
('donald', 0.71667767797013937),
('endearing', 0.71465338578090898),
('relationships', 0.71393795022901896),
('greatly', 0.71256526641704687),
('charlie', 0.71024161391924534),
('simon', 0.70967648251115578),
('effectively', 0.70914752190638641),
('march', 0.70774597998109789),
('atmosphere', 0.70744773070214162),
('influence', 0.70733181555190172),
('genius', 0.706392407309966),
('emotionally', 0.70556970055850243),
('ken', 0.70526854109229009),
('identity', 0.70484322032313651),
('sophisticated', 0.70470800296102132),
('dan', 0.70457587638356811),
('andrew', 0.70329955202396321),
('india', 0.70144598337464037),
('roy', 0.69970458110610434),
('surprisingly', 0.6995780708902356),
('sky', 0.69780919366575667),
('romantic', 0.69664981111114743),
('match', 0.69566924999265523),
('meets', 0.69314718055994529),
('cowboy', 0.69314718055994529),
('wave', 0.69314718055994529),
('bitter', 0.69314718055994529),
('patient', 0.69314718055994529),
('stylish', 0.69314718055994529),
('britain', 0.69314718055994529),
('affected', 0.69314718055994529),
('beatty', 0.69314718055994529),
('love', 0.69198533541937324),
('paul', 0.68980827929443067),
('andy', 0.68846333124751902),
('performance', 0.68797386327972465),
('patrick', 0.68645819240914863),
('unlike', 0.68546468438792907),
('brooks', 0.68433655087779044),
('refuses', 0.68348526964820844),
('award', 0.6824518914431974),
('complaint', 0.6824518914431974),
('ride', 0.68229716453587952),
('dawson', 0.68171848473632257),
('luke', 0.68158635815886937),
('wells', 0.68087708796813096),
('france', 0.6804081547825156),
('sports', 0.68007509899259255),
('handsome', 0.68007509899259255),
('directs', 0.67875844310784572),
('rebel', 0.67875844310784572),
('greater', 0.67605274720064523),
('dreams', 0.67599410133369586),
('effective', 0.67565402311242806),
('interpretation', 0.67479804189174875),
('works', 0.67445504754779284),
('brando', 0.67445504754779284),
('noble', 0.6737290947028437),
('paced', 0.67314651385327573),
('le', 0.67067432470788668),
('master', 0.67015766233524654),
('h', 0.6696166831497512),
('rings', 0.66904962898088483),
('easy', 0.66895995494594152),
('city', 0.66820823221269321),
('sunshine', 0.66782937257565544),
('succeeds', 0.66647893347778397),
('relations', 0.664159643686693),
('england', 0.66387679825983203),
('glimpse', 0.66329421741026418),
('aired', 0.66268797307523675),
('sees', 0.66263163663399482),
('both', 0.66248336767382998),
('definitely', 0.66199789483898808),
('imaginative', 0.66139848224536502),
('appreciate', 0.66083893732728749),
('tricks', 0.66071190480679143),
('striking', 0.66071190480679143),
('carefully', 0.65999497324304479),
('complicated', 0.65981076029235353),
('perspective', 0.65962448852130173),
('trilogy', 0.65877953705573755),
('future', 0.65834665141052828),
('lion', 0.65742909795786608),
('douglas', 0.65540685257709819),
('victor', 0.65540685257709819),
('inspired', 0.65459851044271034),
('marriage', 0.65392646740666405),
('demands', 0.65392646740666405),
('father', 0.65172321672194655),
('page', 0.65123628494430852),
('instant', 0.65058756614114943),
('era', 0.6495567444850836),
('ruthless', 0.64934455790155243),
('saga', 0.64934455790155243),
('joan', 0.64891392558311978),
('joseph', 0.64841128671855386),
('workers', 0.64829661439459352),
('fantasy', 0.64726757480925168),
('distant', 0.64551913157069074),
('accomplished', 0.64551913157069074),
('manhattan', 0.64435701639051324),
('personal', 0.64355023942057321),
('meeting', 0.64313675998528386),
('individual', 0.64313675998528386),
('pushing', 0.64313675998528386),
('pleasant', 0.64250344774119039),
('brave', 0.64185388617239469),
('william', 0.64083139119578469),
('hudson', 0.64077919504262937),
('friendly', 0.63949446706762514),
('eccentric', 0.63907995928966954),
('awards', 0.63875310849414646),
('jack', 0.63838309514997038),
('seeking', 0.63808740337691783),
('divorce', 0.63757732940513456),
('colonel', 0.63757732940513456),
('jane', 0.63443957973316734),
('keeping', 0.63414883979798953),
('gives', 0.63383568159497883),
('ted', 0.63342794585832296),
('animation', 0.63208692379869902),
('progress', 0.6317782341836532),
('larger', 0.63127177684185776),
('concert', 0.63127177684185776),
('nation', 0.6296337748376194),
('albeit', 0.62739580299716491),
('discovers', 0.62542900650499444),
('classic', 0.62504956428050518),
('segment', 0.62335141862440335),
('morgan', 0.62303761437291871),
('mouse', 0.62294292188669675),
('impressive', 0.62211140744319349),
('artist', 0.62168821657780038),
('ultimate', 0.62168821657780038),
('griffith', 0.62117368093485603),
('drew', 0.62082651898031915),
('emily', 0.62082651898031915),
('moved', 0.6197197120051281),
('families', 0.61903920840622351),
('profound', 0.61903920840622351),
('innocent', 0.61851219917136446),
('versions', 0.61730910416844087),
('eddie', 0.61691981517206107),
('criticism', 0.61651395453902935),
('nature', 0.61594514653194088),
('recognized', 0.61518563909023349),
('sexuality', 0.61467556511845012),
('contract', 0.61400986000122149),
('brian', 0.61344043794920278),
('remembered', 0.6131044728864089),
('determined', 0.6123858239154869),
('offers', 0.61207935747116349),
('pleasure', 0.61195702582993206),
('washington', 0.61180154110599294),
('images', 0.61159731359583758),
('games', 0.61067095873570676),
('fashioned', 0.60798937221963845),
('melodrama', 0.60749173598145145),
('rough', 0.60613580357031549),
('charismatic', 0.60613580357031549),
('peoples', 0.60613580357031549),
('dealing', 0.60517840761398811),
('fine', 0.60496962268013299),
('tap', 0.60391604683200273),
('trio', 0.60157998703445481),
('russell', 0.60120968523425966),
('figures', 0.60077386042893011),
('ward', 0.60005675749393339),
('shine', 0.59911823091166894),
('job', 0.59845562125168661),
('satisfied', 0.59652034487087369),
('river', 0.59637962862495086),
('brown', 0.595773016534769),
('believable', 0.59566072133302495),
('always', 0.59470710774669278),
('bound', 0.59470710774669278),
('hall', 0.5933967777928858),
('cook', 0.5916777203950857),
('claire', 0.59136448625000293),
('anna', 0.58778666490211906),
('peace', 0.58628403501758408),
('visually', 0.58539431926349916),
('morality', 0.58525821854876026),
('falk', 0.58525821854876026),
('growing', 0.58466653756587539),
('experiences', 0.58314628534561685),
('stood', 0.58314628534561685),
('touch', 0.58122926435596001),
('lives', 0.5810976767513224),
('kubrick', 0.58066919713325493),
('timing', 0.58047401805583243),
('expressions', 0.57981849525294216),
('struggles', 0.57981849525294216),
('authentic', 0.57848427223980559),
('helen', 0.57763429343810091),
('pre', 0.57700753064729182),
('quirky', 0.5753641449035618),
('young', 0.57531672344534313),
('inner', 0.57454143815209846),
('mexico', 0.57443087372056334),
('clint', 0.57380042292737909),
('sisters', 0.57286101468544337),
('realism', 0.57226528899949558),
('french', 0.5720692490067093),
('personalities', 0.5720692490067093),
('surprises', 0.57113222999698177),
('overcome', 0.5697681593994407),
('timothy', 0.56953322459276867),
('tales', 0.56909453188996639),
('war', 0.56843317302781682),
('civil', 0.5679840376059393),
('countries', 0.56737779327091187),
('streep', 0.56710645966458029),
('oliver', 0.56673325570428668),
('australia', 0.56580775818334383),
('understanding', 0.56531380905006046),
('players', 0.56509525370004821),
('knowing', 0.56489284503626647),
('rogers', 0.56421349718405212),
('suspenseful', 0.56368911332305849),
('variety', 0.56368911332305849),
('true', 0.56281525180810066),
('jr', 0.56220982311246936),
('psychological', 0.56108745854687891),
('sent', 0.55961578793542266),
('grand', 0.55961578793542266),
('branagh', 0.55961578793542266),
('reminiscent', 0.55961578793542266),
('performing', 0.55961578793542266),
('wealth', 0.55961578793542266),
('overwhelming', 0.55961578793542266),
('odds', 0.55961578793542266),
('brothers', 0.55891181043362848),
('howard', 0.55811089675600245),
('david', 0.55693122256475369),
('generation', 0.55628799784274796),
('grow', 0.55612538299565417),
('survival', 0.55594605904646033),
('mainstream', 0.55574731115750231),
('dick', 0.55431073570572953),
('charm', 0.55288175575407861),
('kirk', 0.55278982286502287),
('twists', 0.55244729845681018),
('gangster', 0.55206858230003986),
('jeff', 0.55179306225421365),
('family', 0.55116244510065526),
('tend', 0.55053307336110335),
('thanks', 0.55049088015842218),
('world', 0.54744234723432639),
('sutherland', 0.54743536937855164),
('life', 0.54695514434959924),
('disc', 0.54654370636806993),
('bug', 0.54654370636806993),
('tribute', 0.5455111817538808),
('europe', 0.54522705048332309),
('sacrifice', 0.54430155296238014),
('color', 0.54405127139431109),
('superior', 0.54333490233128523),
('york', 0.54318235866536513),
('pulls', 0.54266622962164945),
('jackson', 0.54232429082536171),
('hearts', 0.54232429082536171),
('enjoy', 0.54124285135906114),
('redemption', 0.54056759296472823),
('stands', 0.5389965007326869),
('trial', 0.5389965007326869),
('greek', 0.5389965007326869),
('hamilton', 0.5389965007326869),
('each', 0.5388212312554177),
('faithful', 0.53773307668591508),
('documentaries', 0.53714293208336406),
('jealous', 0.53714293208336406),
('different', 0.53709860682460819),
('describes', 0.53680111016925136),
('shorts', 0.53596159703753288),
('brilliance', 0.53551823635636209),
('mountains', 0.53492317534505118),
('share', 0.53408248593025787),
('dealt', 0.53408248593025787),
('providing', 0.53329847961804933),
('explore', 0.53329847961804933),
('series', 0.5325809226575603),
('fellow', 0.5323318289869543),
('loves', 0.53062825106217038),
('revolution', 0.53062825106217038),
('olivier', 0.53062825106217038),
('roman', 0.53062825106217038),
('century', 0.53002783074992665),
('musical', 0.52966871156747064),
('heroic', 0.52925932545482868),
('approach', 0.52806743020049673),
('ironically', 0.52806743020049673),
('temple', 0.52806743020049673),
('moves', 0.5279372642387119),
('julie', 0.52609309589677911),
('tells', 0.52415107836314001),
('uncle', 0.52354439617376536),
('union', 0.52324814376454787),
('deep', 0.52309571635780505),
('reminds', 0.52157841554225237),
('famous', 0.52118841080153722),
('jazz', 0.52053443789295151),
('dennis', 0.51987545928590861),
('epic', 0.51919387343650736),
('shows', 0.51915322220375304),
('performed', 0.5191244265806858),
('demons', 0.5191244265806858),
('discovered', 0.51879379341516751),
('eric', 0.51879379341516751),
('youth', 0.5185626062681431),
('human', 0.51851411224987087),
('tarzan', 0.51813827061227724),
('ourselves', 0.51794309153485463),
('wwii', 0.51758240622887042),
('passion', 0.5162164724008671),
('desire', 0.51607497965213445),
('pays', 0.51581316527702981),
('dirty', 0.51557622652458857),
('fox', 0.51557622652458857),
('sympathetic', 0.51546600332249293),
('symbolism', 0.51546600332249293),
('attitude', 0.51530993621331933),
('appearances', 0.51466440007315639),
('jeremy', 0.51466440007315639),
('fun', 0.51439068993048687),
('south', 0.51420972175023116),
('arrives', 0.51409894911095988),
('present', 0.51341965894303732),
('com', 0.51326167856387173),
('smile', 0.51265880484765169),
('alan', 0.51082562376599072),
('ring', 0.51082562376599072),
('visit', 0.51082562376599072),
('fits', 0.51082562376599072),
('provided', 0.51082562376599072),
('carter', 0.51082562376599072),
('aging', 0.51082562376599072),
('countryside', 0.51082562376599072),
('begins', 0.51015650363396647),
('success', 0.50900578704900468),
('japan', 0.50900578704900468),
('accurate', 0.50895471583017893),
('proud', 0.50800474742434931),
('daily', 0.5075946031845443),
('karloff', 0.50724780241810674),
('atmospheric', 0.50724780241810674),
('recently', 0.50714914903668207),
('fu', 0.50704490092608467),
('horrors', 0.50656122497953315),
('finding', 0.50637127341661037),
('lust', 0.5059356384717989),
('hitchcock', 0.50574947073413001),
('among', 0.50334004951332734),
('viewing', 0.50302139827440906),
('investigation', 0.50262885656181222),
('shining', 0.50262885656181222),
('duo', 0.5020919437972361),
('cameron', 0.5020919437972361),
('finds', 0.50128303100539795),
('contemporary', 0.50077528791248915),
('genuine', 0.50046283673044401),
('frightening', 0.49995595152908684),
('plays', 0.49975983848890226),
('age', 0.49941323171424595),
('position', 0.49899116611898781),
('continues', 0.49863035067217237),
('roles', 0.49839716550752178),
('james', 0.49837216269470402),
('individuals', 0.49824684155913052),
('brought', 0.49783842823917956),
('hilarious', 0.49714551986191058),
('brutal', 0.49681488669639234),
('appropriate', 0.49643688631389105),
('dance', 0.49581998314812048),
('league', 0.49578774640145024),
('helping', 0.49578774640145024),
('stunts', 0.49561620510246196),
('traveling', 0.49532143723002542),
('thoroughly', 0.49414593456733524),
('depicted', 0.49317068852726992),
('combination', 0.49247648509779424),
('honor', 0.49247648509779424),
('differences', 0.49247648509779424),
('fully', 0.49213349075383811),
('tracy', 0.49159426183810306),
('battles', 0.49140753790888908),
('possibility', 0.49112055268665822),
('romance', 0.4901589869574316),
('initially', 0.49002249613622745),
('happy', 0.4898997500608791),
('crime', 0.48977221456815834),
('singing', 0.4893852925281213),
('especially', 0.48901267837860624),
('shakespeare', 0.48754793889664511),
('hugh', 0.48729512635579658),
('detail', 0.48609484250827351),
('julia', 0.48550781578170082),
('san', 0.48550781578170082),
('guide', 0.48550781578170082),
('desperation', 0.48550781578170082),
('companion', 0.48550781578170082),
('strongly', 0.48460242866688824),
('necessary', 0.48302334245403883),
('humanity', 0.48265474679929443),
('drama', 0.48221998493060503),
('nonetheless', 0.48183808689273838),
('intrigue', 0.48183808689273838),
('warming', 0.48183808689273838),
('cuba', 0.48183808689273838),
('planned', 0.47957308026188628),
('pictures', 0.47929937011921681),
('nine', 0.47803580094299974),
('settings', 0.47743860773325364),
('history', 0.47732966933780852),
('ordinary', 0.47725880012690741),
('official', 0.47608267532211779),
('primary', 0.47608267532211779),
('episode', 0.47529620261150429),
('role', 0.47520268270188676),
('spirit', 0.47477690799839323),
('grey', 0.47409361449726067),
('ways', 0.47323464982718205),
('cup', 0.47260441094579297),
('piano', 0.47260441094579297),
('familiar', 0.47241617565111949),
('sinister', 0.47198579044972683),
('reveal', 0.47171449364936496),
('max', 0.47150852042515579),
('dated', 0.47121648567094482),
('losing', 0.47000362924573563),
('discovery', 0.47000362924573563),
('vicious', 0.47000362924573563),
('genuinely', 0.46871413841586385),
('hatred', 0.46734051182625186),
('mistaken', 0.46702300110759781),
('dream', 0.46608972992459924),
('challenge', 0.46608972992459924),
('crisis', 0.46575733836428446),
('photographed', 0.46488852857896512),
('critics', 0.46430560813109778),
('bird', 0.46430560813109778),
('machines', 0.46430560813109778),
('born', 0.46411383518967209),
('detective', 0.4636633473511525),
('higher', 0.46328467899699055),
('remains', 0.46262352194811296),
('inevitable', 0.46262352194811296),
('soviet', 0.4618180446592961),
('ryan', 0.46134556650262099),
('african', 0.46112595521371813),
('smaller', 0.46081520319132935),
('techniques', 0.46052488529119184),
('information', 0.46034171833399862),
('deserved', 0.45999798712841444),
('lynch', 0.45953232937844013),
('spielberg', 0.45953232937844013),
('cynical', 0.45953232937844013),
('tour', 0.45953232937844013),
('francisco', 0.45953232937844013),
('struggle', 0.45911782160048453),
('language', 0.45902121257712653),
('visual', 0.45823514408822852),
('warner', 0.45724137763188427),
('social', 0.45720078250735313),
('reality', 0.45719346885019546),
('hidden', 0.45675840249571492),
('breaking', 0.45601738727099561),
('sometimes', 0.45563021171182794),
('modern', 0.45500247579345005),
('surfing', 0.45425527227759638),
('popular', 0.45410691533051023),
('surprised', 0.4534409399850382),
('follows', 0.45245361754408348),
('keeps', 0.45234869400701483),
('john', 0.4520909494482197),
('mixed', 0.45198512374305722),
('defeat', 0.45198512374305722),
('justice', 0.45142724367280018),
('treasure', 0.45083371313801535),
('presents', 0.44973793178615257),
('years', 0.44919197032104968),
('chief', 0.44895022004790319),
('closely', 0.44701411102103689),
('segments', 0.44701411102103689),
('lose', 0.44658335503763702),
('caine', 0.44628710262841953),
('caught', 0.44610275383999071),
('hamlet', 0.44558510189758965),
('chinese', 0.44507424620321018),
('welcome', 0.44438052435783792),
('birth', 0.44368632092836219),
('represents', 0.44320543609101143),
('puts', 0.44279106572085081),
('visuals', 0.44183275227903923),
('fame', 0.44183275227903923),
('closer', 0.44183275227903923),
('web', 0.44183275227903923),
('criminal', 0.4412745608048752),
('minor', 0.4409224199448939),
('jon', 0.44086703515908027),
('liked', 0.44074991514020723),
('restaurant', 0.44031183943833246),
('de', 0.43983275161237217),
('flaws', 0.43983275161237217),
('searching', 0.4393666597838457),
('rap', 0.43891304217570443),
('light', 0.43884433018199892),
('elizabeth', 0.43872232986464677),
('marry', 0.43861731542506488),
('learned', 0.43825493093115531),
('controversial', 0.43825493093115531),
('oz', 0.43825493093115531),
('slowly', 0.43785660389939979),
('comedic', 0.43721380642274466),
('wayne', 0.43721380642274466),
('thrilling', 0.43721380642274466),
('bridge', 0.43721380642274466),
('married', 0.43658501682196887),
('nazi', 0.4361020775700542),
('murder', 0.4353180712578455),
('physical', 0.4353180712578455),
('johnny', 0.43483971678806865),
('michelle', 0.43445264498141672),
('wallace', 0.43403848055222038),
('comedies', 0.43395706390247063),
('silent', 0.43395706390247063),
('played', 0.43387244114515305),
('international', 0.43363598507486073),
('vision', 0.43286408229627887),
('intelligent', 0.43196704885367099),
('shop', 0.43078291609245434),
('also', 0.43036720209769169),
('levels', 0.4302451371066513),
('miss', 0.43006426712153217),
('movement', 0.4295626596872249),
...]

``````
``````

In [18]:

# words most frequently seen in a review with a "NEGATIVE" label
list(reversed(pos_neg_ratios.most_common()))[0:30]

``````
``````

Out[18]:

[('boll', -4.0778152602708904),
('uwe', -3.9218753018711578),
('seagal', -3.3202501058581921),
('unwatchable', -3.0269848170580955),
('stinker', -2.9876839403711624),
('mst', -2.7753833211707968),
('incoherent', -2.7641396677532537),
('unfunny', -2.5545257844967644),
('waste', -2.4907515123361046),
('blah', -2.4475792789485005),
('horrid', -2.3715779644809971),
('pointless', -2.3451073877136341),
('atrocious', -2.3187369339642556),
('redeeming', -2.2667790015910296),
('prom', -2.2601040980178784),
('drivel', -2.2476029585766928),
('lousy', -2.2118080125207054),
('worst', -2.1930856334332267),
('laughable', -2.172468615469592),
('awful', -2.1385076866397488),
('poorly', -2.1326133844207011),
('wasting', -2.1178155545614512),
('remotely', -2.111046881095167),
('existent', -2.0024805005437076),
('boredom', -1.9241486572738005),
('miserably', -1.9216610938019989),
('sucks', -1.9166645809588516),
('uninspired', -1.9131499212248517),
('lame', -1.9117232884159072),
('insult', -1.9085323769376259)]

``````

# Transforming Text into Numbers

``````

In [19]:

from IPython.display import Image

review = "This was a horrible, terrible movie."

Image(filename='sentiment_network.png')

``````
``````

Out[19]:

``````
``````

In [20]:

review = "The movie was excellent"

Image(filename='sentiment_network_pos.png')

``````
``````

Out[20]:

``````

# Project 2: Creating the Input/Output Data

``````

In [21]:

vocab = set(total_counts.keys())
vocab_size = len(vocab)
print(vocab_size)

``````
``````

74074

``````
``````

In [22]:

list(vocab)

``````
``````

Out[22]:

['',
'cockfighting',
'companion',
'metaphorically',
'bureaucrats',
'lollies',
'cannabis',
'portraited',
'zones',
'mcliam',
'goldustluna',
'voices',
'vigilant',
'supes',
'hbo',
'trys',
'soundly',
'airways',
'fintail',
'munched',
'pointe',
'meal',
'carver',
'hoops',
'dazzlingly',
'capitalist',
'testicle',
'karogi',
'stifle',
'temples',
'suspicious',
'reigert',
'indifferently',
'percussion',
'wheelchair',
'intransigent',
'superpowerman',
'rantzen',
'mccheese',
'dithered',
'sailors',
'copycats',
'immobile',
'asha',
'otami',
'emails',
'unchained',
'meets',
'pisa',
'levelled',
'trude',
'slideshow',
'tehran',
'interweaving',
'dice',
'videodrome',
'overturning',
'participates',
'unknowledgeable',
'putative',
'lowest',
'maura',
'jaques',
'pandering',
'languished',
'outsource',
'equip',
'inquisition',
'immoderate',
'passively',
'comment',
'nexus',
'reproaches',
'shakespeareans',
'heighten',
'leg',
'nokitofa',
'mikl',
'ekstase',
'scoffed',
'els',
'slack',
'fulcis',
'yu',
'maidens',
'pineyro',
'serra',
'repetoir',
'spiro',
'abducting',
'particle',
'dutt',
'pacifical',
'beeped',
'yevgeni',
'costal',
'boonies',
'wrung',
'enraptured',
'critised',
'skosh',
'concern',
'amoretti',
'demure',
'carrillo',
'decimates',
'authorizes',
'formalist',
'wholes',
'corpsethe',
'yalom',
'emand',
'mcintyre',
'implores',
'eddington',
'library',
'basics',
'drunken',
'dividing',
'divas',
'crucifies',
'compasses',
'outreach',
'scaffoldings',
'pygmy',
'ankylosaur',
'kriemshild',
'unthreatening',
'rustlers',
'frothing',
'progrmmer',
'invokes',
'race',
'effluvia',
'ruts',
'mammet',
'cds',
'trivializes',
'brewing',
'everyway',
'recasted',
'cheezie',
'bwitch',
'equilibrium',
'raffs',
'implements',
'commishioner',
'toliet',
'kettle',
'ciochetti',
'semantic',
'hoky',
'furiouscough',
'arturo',
'guiry',
'chiaroscuro',
'bop',
'irreversable',
'reelers',
'wired',
'schizophrenic',
'differing',
'pretentions',
'conceiving',
'osenniy',
'accumulation',
'oopps',
'exhaust',
'necessities',
'scotched',
'ohh',
'fondas',
'toughen',
'coattails',
'enunciates',
'turbans',
'kwouk',
'animates',
'roms',
'asssociated',
'schygula',
'beautify',
'farells',
'farce',
'reopen',
'rodney',
'traversing',
'sky',
'sportsmanship',
'ripe',
'pata',
'changeover',
'elaine',
'castlevania',
'aggressiveness',
'unpremeditated',
'icarus',
'y',
'suggestions',
'sheeple',
'defends',
'survivable',
'bludgeoned',
'somme',
'muslim',
'montano',
'helix',
'discharged',
'creamed',
'cr',
'nuel',
'mobarak',
'hohokam',
'salvific',
'amoured',
'ramya',
'specter',
'cattleman',
'defected',
'psych',
'rightness',
'whoppie',
'thatcher',
'splendid',
'enhancement',
'fatih',
'cunnilingus',
'survives',
'cundey',
'electric',
'fiend',
'foreground',
'potent',
'marple',
'dongen',
'harts',
'writes',
'empathizing',
'present',
'osullivan',
'infiltration',
'mudbank',
'togan',
'selve',
'megatons',
'reducing',
'purveyor',
'mist',
'accredited',
'loners',
'fruit',
'money',
'seild',
'unopposed',
'escapee',
'provokes',
'hickey',
'cornea',
'uncomfortably',
'luege',
'spano',
'undefinable',
'dutched',
'throws',
'mh',
'assume',
'affirming',
'stripping',
'rover',
'coolness',
'overemphasis',
'retinas',
'shyness',
'tipple',
'parallelisms',
'debucourt',
'placido',
'wildsmith',
'nuddie',
'mcmaster',
'coutts',
'monikers',
'fked',
'freshly',
'beatles',
'whishaw',
'string',
'pylon',
'greenstreet',
'salsa',
'jus',
'biographys',
'bricked',
'upturn',
'nuyoricans',
'aguila',
'restructuring',
'rupee',
'potency',
'effectively',
'dupont',
'spoiled',
'obelisk',
'douce',
'dictators',
'hasslehoff',
'mortals',
'marts',
'frenchfilm',
'possess',
'supertexts',
'ghatak',
'blinders',
'pawning',
'saarsgard',
'bahamas',
'part',
'streisand',
'growled',
'eighth',
'bowersock',
'macaroni',
'barbarous',
'thoughtfully',
'glowing',
'codfish',
'plymouth',
'charterers',
'heavy',
'exploiter',
'prepoire',
'mopes',
'peer',
'larking',
'shae',
'groupie',
'littlefield',
'gonzo',
'policewoman',
'thundercats',
'pores',
'skers',
'dren',
'arsewit',
'willims',
'violently',
'wertmuller',
'bitterman',
'iordache',
'lofaso',
'overlook',
'carreyed',
'thou',
'datta',
'pounce',
'shivery',
'musical',
'purrrrrrrrrrrrrrrr',
'ahhhhhh',
'daerden',
'zeon',
'stamped',
'korda',
'simpatico',
'donnacha',
'nothwest',
'pit',
'minding',
'stribor',
'prequel',
'shakesphere',
'harbour',
'incoming',
'leena',
'undercurrent',
'python',
'paging',
'crinkled',
'perpetuation',
'brackish',
'treacherously',
'sforza',
'niklas',
'marginalized',
'fincher',
'msr',
'dithering',
'stamina',
'affected',
'redeeming',
'retire',
'stewardess',
'impersonalized',
'quaien',
'sipped',
'blurt',
'bsa',
'gesticulating',
'constitute',
'ahehehe',
'meekly',
'gosha',
'zimmerframe',
'spools',
'inexistent',
'therefore',
'emilia',
'turveydrop',
'drier',
'ways',
'drinking',
'maitlan',
'sneha',
'bakesfield',
'rinse',
'slimey',
'lozano',
'indigo',
'tripping',
'subsides',
'deludes',
'reviews',
'spirituality',
'insurance',
'scriptors',
'precedent',
'telescoping',
'sirico',
'submissions',
'urbisci',
'loveability',
'aswell',
'tested',
'isla',
'contribute',
'cahill',
'cohan',
'costello',
'dorkiness',
'shaw',
'crooks',
'bulk',
'porn',
'windfall',
'mehmet',
'engel',
'schizo',
'somber',
'svengali',
'towered',
'witnessed',
'worst',
'scanned',
'marber',
'geez',
'stalled',
'averaged',
'seaminess',
'incidental',
'stalk',
'murals',
'yas',
'extremeley',
'unmoored',
'moralizing',
'stoker',
'oddest',
'gabrielle',
'munsters',
'zestful',
'tlog',
'http',
'houswives',
'gras',
'deceivingly',
'overburdening',
'francie',
'americanime',
'jurassic',
'rendevous',
'funner',
'colony',
'reminisced',
'schwarzenberg',
'drywall',
'findings',
'kidnap',
'esp',
'quandaries',
'fishing',
'snubbed',
'juliette',
'ideologue',
'secondaries',
'scratcher',
'obsessive',
'modernization',
'analogies',
'braided',
'extremity',
'daimajin',
'warmongering',
'characterise',
'conspir',
'jokesdespite',
'frock',
'craziest',
'continuing',
'bark',
'depending',
'hara',
'glazen',
'corruption',
'captivated',
'teabagging',
'renditions',
'quitte',
'upsidedownor',
'cpo',
'aggrandizement',
'slackly',
'beatlemaniac',
'delli',
'geared',
'cleopatra',
'jurisprudence',
'confronts',
'mishap',
'caps',
'muscats',
'wishbone',
'yomiuri',
'isham',
'quest',
'rappers',
'marilee',
'jasons',
'migenes',
'comprises',
'alls',
'implausability',
'torch',
'settlements',
'invisibly',
'toyman',
'windu',
'dooooom',
'whiny',
'empathise',
'cozied',
'milan',
'unzip',
'hera',
'marnack',
'assult',
'referendum',
'louvers',
'deherrera',
'stubbs',
'baloney',
'martains',
'manipulate',
'frogmarched',
'surmount',
'elene',
'grinders',
'hybridnot',
'binding',
'significance',
'texas',
'zaps',
'halfhearted',
'donkey',
'jamie',
'casted',
'mcaffe',
'striving',
'vegetarians',
'jennifers',
'decimals',
'orchestrating',
'gard',
'himmler',
'plussed',
'cambodian',
'blankety',
'refreshing',
'gloomy',
'belgian',
'brutal',
'courtland',
'screenlay',
'outclassed',
'ruthlessreviews',
'schoolish',
'baggy',
'rwandese',
'weasing',
'worthlessness',
'zarah',
'scatchard',
'frederik',
'mias',
'raksha',
'definite',
'cooling',
'seraphim',
'vanguard',
'asano',
'maimed',
'wohl',
'heuy',
'balding',
'earnt',
'separately',
'unearthed',
'parvenu',
'gunked',
'tanaaz',
'elitism',
'reasonbaly',
'pardoning',
'saluja',
'taximeter',
'choreographic',
'discipline',
'armaments',
'beswicke',
'geeze',
'cutter',
'happenin',
'howlers',
'sputtered',
'irreparably',
'informality',
'glancingly',
'programme',
'parlaying',
'ghoul',
'westmore',
'philip',
'chopping',
'surfing',
'raven',
'popularize',
'engulf',
'carruthers',
'czekh',
'griswald',
'verveen',
'insistence',
'weirdness',
'wearing',
'pills',
'doomsville',
'loreno',
'maximally',
'pestilence',
'departing',
'beany',
'andr',
'sores',
'legged',
'alloy',
'rowdies',
'sanitizes',
'sharman',
'honduras',
'glares',
'texel',
'factness',
'banded',
'swathed',
'shocky',
'confusathon',
'shuns',
'commender',
'lucinenne',
'chapin',
'ghosties',
'feirstein',
'rip',
'illustrates',
'earthbound',
'behavioural',
'speeded',
'broome',
'unassaulted',
'wooster',
'vindicates',
'gabbar',
'braintrust',
'progressed',
'terminatrix',
'verbalizations',
'dupia',
'excactly',
'suits',
'babaji',
'raschid',
'door',
'subset',
'sheng',
'traces',
'hearken',
'councilwoman',
'mordant',
'tsunami',
'savings',
'wrightly',
'spite',
'efficient',
'beaty',
'jingoistic',
'ashknenazi',
'belt',
'peevishness',
'pranks',
'dingaling',
'confederation',
'morning',
'hershey',
'yablans',
'pontificate',
'hotdog',
'ochoa',
'definable',
'bonanzas',
'laural',
'deus',
'archrivals',
'daal',
'unintended',
'dominique',
'lattices',
'ball',
'demeaned',
'planter',
'francis',
'favourites',
'tedious',
'matlock',
'palmentari',
'animaster',
'daydreams',
'palo',
'mol',
'marshal',
'fleece',
'bookending',
'offed',
'pensacolians',
'wean',
'fait',
'glaciers',
'hoofing',
'muffled',
'revitalized',
'armless',
'tis',
'benjy',
'wendigo',
'haughty',
'edwige',
'magnetism',
'fortyish',
'obese',
'cinmatographe',
'ilu',
'dissaude',
'takkyuubin',
'sollace',
'persue',
'scheduled',
'prehysteria',
'attracting',
'arden',
'omc',
'unquestionably',
'bostwick',
'ornella',
'poochie',
'argo',
'ninga',
'shelf',
'litigation',
'ballet',
'grooming',
'evidente',
'righetti',
'reliability',
'incapacitating',
'allay',
'melvyn',
'lyons',
'roams',
'steinberg',
'unsettles',
'robotnik',
'schindlers',
'berkowitz',
'uppercrust',
'markel',
'ecologically',
'syvlie',
'airports',
'independence',
'inauthentic',
'sufferings',
'fellner',
'sternly',
'orlans',
'funkions',
'regiments',
'tranquility',
'naista',
'montezuma',
'carnosaur',
'astra',
'manifests',
'thieson',
'bib',
'simmond',
'prosthetic',
'uta',
'viscerally',
'gaolers',
'learner',
'cannibalize',
'classic',
'gilt',
'bania',
'lanquage',
'mauritania',
'oddballs',
'gnaw',
'treat',
'disregarding',
'haley',
'fall',
'hickman',
'oppress',
'mcdonell',
'blowtorches',
'kneecaps',
'initialize',
'hottub',
'foudre',
'pointblank',
'laughting',
'merritt',
'singlet',
'commandments',
'jlh',
'abrahams',
'recut',
'hydraulics',
'thomson',
'greeeeeat',
'unimaginably',
'yahoo',
'galling',
'bowl',
'rotted',
'compositely',
'ungratifying',
'flunked',
'mum',
'queens',
'avati',
'hester',
'tiffani',
'treasonous',
'alsobrook',
'estonia',
'wathced',
'climatic',
'behold',
'printer',
'winslet',
'minutes',
'glaringly',
'quatermaine',
'grainy',
'nowheres',
'lordship',
'trespassing',
'reorder',
'fizzles',
'banana',
'diner',
'carotte',
'nina',
'jabbering',
'michale',
'dispersement',
'insignificance',
'obscenely',
'riccardo',
'killed',
'truffle',
'vivian',
'aristotle',
'emilie',
'vacancy',
'changruputra',
'edelman',
'kar',
'trotta',
'thickener',
'rajpal',
'windstorm',
'sylke',
'fascinating',
'haj',
'iconor',
'bensen',
'trelkovski',
'filmcow',
'mente',
'pontiac',
'carltio',
'hillside',
'greatfully',
'makepease',
'pungency',
'decides',
'migraine',
'condensing',
'crowned',
'cop',
'mythos',
'crandall',
'merendino',
'unrecognizable',
'apparatchik',
'swimmers',
'campfield',
'eastward',
'smight',
'valdez',
'guises',
'cameroon',
'segregating',
'hardin',
'krupa',
'woodfin',
'albans',
'kitchener',
'pharmaceutical',
'lithe',
'responded',
'ebullient',
'fonzie',
'cramer',
'morena',
'contemp',
'pods',
'sherwood',
'schuer',
'dck',
'reinstall',
'spenny',
'daz',
'tantalizing',
'microsoft',
'symbolically',
'nationalities',
'felisberto',
'stan',
'shubert',
...]

``````
``````

In [23]:

import numpy as np

layer_0 = np.zeros((1,vocab_size))
layer_0

``````
``````

Out[23]:

array([[ 0.,  0.,  0., ...,  0.,  0.,  0.]])

``````
``````

In [47]:

from IPython.display import Image
Image(filename='sentiment_network.png')

``````
``````

Out[47]:

``````
``````

In [25]:

word2index = {}

for i,word in enumerate(vocab):
word2index[word] = i
word2index

``````
``````

Out[25]:

{'': 0,
'cockfighting': 1,
'companion': 2,
'metaphorically': 3,
'bureaucrats': 4,
'lollies': 5,
'cannabis': 6,
'portraited': 7,
'zones': 8,
'mcliam': 9,
'goldustluna': 10,
'voices': 11,
'vigilant': 12,
'supes': 13,
'hbo': 15,
'trys': 16,
'soundly': 17,
'airways': 18,
'fintail': 19,
'munched': 20,
'pointe': 21,
'meal': 22,
'carver': 23,
'hoops': 24,
'dazzlingly': 25,
'capitalist': 26,
'testicle': 27,
'karogi': 28,
'stifle': 29,
'temples': 30,
'suspicious': 31,
'reigert': 32,
'indifferently': 33,
'percussion': 34,
'wheelchair': 35,
'intransigent': 36,
'superpowerman': 37,
'rantzen': 38,
'mccheese': 39,
'dithered': 40,
'sailors': 41,
'copycats': 42,
'immobile': 43,
'asha': 44,
'otami': 45,
'emails': 46,
'unchained': 47,
'meets': 48,
'pisa': 49,
'levelled': 50,
'trude': 51,
'slideshow': 52,
'tehran': 53,
'interweaving': 54,
'dice': 55,
'videodrome': 56,
'overturning': 57,
'participates': 58,
'unknowledgeable': 59,
'putative': 60,
'lowest': 61,
'maura': 62,
'jaques': 63,
'pandering': 64,
'languished': 65,
'outsource': 66,
'equip': 67,
'inquisition': 68,
'immoderate': 69,
'passively': 70,
'comment': 71,
'nexus': 72,
'reproaches': 73,
'shakespeareans': 74,
'heighten': 75,
'leg': 76,
'nokitofa': 77,
'mikl': 78,
'ekstase': 79,
'scoffed': 80,
'els': 81,
'slack': 82,
'fulcis': 83,
'yu': 84,
'maidens': 85,
'pineyro': 87,
'serra': 88,
'repetoir': 89,
'spiro': 90,
'abducting': 91,
'particle': 92,
'dutt': 93,
'pacifical': 94,
'beeped': 96,
'yevgeni': 97,
'costal': 98,
'boonies': 99,
'wrung': 100,
'enraptured': 101,
'critised': 102,
'skosh': 103,
'concern': 104,
'amoretti': 105,
'demure': 106,
'carrillo': 107,
'decimates': 108,
'authorizes': 109,
'formalist': 110,
'wholes': 111,
'corpsethe': 112,
'yalom': 113,
'emand': 114,
'mcintyre': 115,
'implores': 116,
'eddington': 117,
'library': 118,
'basics': 119,
'drunken': 120,
'dividing': 121,
'divas': 122,
'crucifies': 123,
'compasses': 124,
'outreach': 125,
'scaffoldings': 126,
'pygmy': 127,
'ankylosaur': 128,
'kriemshild': 129,
'unthreatening': 130,
'rustlers': 131,
'frothing': 132,
'progrmmer': 133,
'invokes': 134,
'race': 135,
'effluvia': 136,
'ruts': 137,
'mammet': 138,
'cds': 139,
'trivializes': 141,
'brewing': 142,
'everyway': 143,
'recasted': 144,
'cheezie': 145,
'bwitch': 146,
'equilibrium': 147,
'raffs': 148,
'implements': 149,
'commishioner': 150,
'toliet': 151,
'kettle': 152,
'ciochetti': 153,
'semantic': 154,
'hoky': 155,
'furiouscough': 156,
'arturo': 157,
'guiry': 158,
'chiaroscuro': 159,
'bop': 160,
'irreversable': 161,
'reelers': 162,
'wired': 163,
'schizophrenic': 164,
'differing': 165,
'pretentions': 166,
'conceiving': 167,
'osenniy': 168,
'accumulation': 169,
'oopps': 170,
'exhaust': 171,
'necessities': 172,
'scotched': 173,
'ohh': 174,
'fondas': 175,
'toughen': 176,
'coattails': 177,
'enunciates': 178,
'turbans': 179,
'kwouk': 180,
'animates': 181,
'roms': 182,
'asssociated': 183,
'schygula': 184,
'beautify': 185,
'farells': 186,
'farce': 187,
'reopen': 188,
'rodney': 189,
'traversing': 190,
'sky': 191,
'sportsmanship': 192,
'ripe': 193,
'pata': 194,
'changeover': 195,
'elaine': 196,
'castlevania': 197,
'aggressiveness': 198,
'unpremeditated': 199,
'icarus': 200,
'y': 201,
'suggestions': 202,
'sheeple': 203,
'defends': 204,
'survivable': 205,
'bludgeoned': 206,
'somme': 207,
'muslim': 208,
'montano': 209,
'helix': 210,
'discharged': 211,
'creamed': 212,
'cr': 213,
'nuel': 214,
'mobarak': 215,
'hohokam': 216,
'salvific': 218,
'amoured': 219,
'ramya': 220,
'specter': 221,
'cattleman': 222,
'defected': 223,
'psych': 224,
'rightness': 225,
'whoppie': 226,
'thatcher': 227,
'splendid': 228,
'enhancement': 229,
'fatih': 230,
'cunnilingus': 231,
'survives': 232,
'cundey': 233,
'electric': 234,
'fiend': 235,
'foreground': 236,
'potent': 237,
'marple': 238,
'dongen': 239,
'harts': 240,
'writes': 241,
'empathizing': 243,
'present': 244,
'osullivan': 245,
'infiltration': 246,
'mudbank': 248,
'togan': 249,
'selve': 250,
'megatons': 251,
'reducing': 252,
'purveyor': 253,
'mist': 254,
'accredited': 256,
'loners': 257,
'fruit': 259,
'money': 260,
'seild': 261,
'unopposed': 262,
'escapee': 263,
'provokes': 264,
'hickey': 265,
'cornea': 266,
'uncomfortably': 268,
'luege': 269,
'spano': 270,
'undefinable': 271,
'dutched': 272,
'throws': 273,
'mh': 274,
'assume': 275,
'affirming': 276,
'stripping': 277,
'rover': 278,
'coolness': 279,
'overemphasis': 280,
'retinas': 281,
'shyness': 282,
'tipple': 283,
'parallelisms': 284,
'debucourt': 285,
'placido': 286,
'wildsmith': 287,
'nuddie': 288,
'mcmaster': 289,
'coutts': 290,
'monikers': 291,
'fked': 292,
'freshly': 293,
'beatles': 294,
'whishaw': 295,
'string': 296,
'pylon': 297,
'greenstreet': 298,
'salsa': 299,
'jus': 300,
'biographys': 301,
'bricked': 303,
'upturn': 304,
'nuyoricans': 305,
'aguila': 306,
'restructuring': 307,
'rupee': 308,
'potency': 309,
'effectively': 310,
'dupont': 311,
'spoiled': 312,
'obelisk': 313,
'douce': 314,
'dictators': 315,
'hasslehoff': 316,
'mortals': 317,
'marts': 318,
'frenchfilm': 319,
'possess': 320,
'supertexts': 321,
'ghatak': 322,
'blinders': 323,
'pawning': 324,
'saarsgard': 325,
'bahamas': 326,
'part': 327,
'streisand': 328,
'growled': 329,
'eighth': 330,
'bowersock': 331,
'macaroni': 332,
'barbarous': 333,
'thoughtfully': 334,
'glowing': 335,
'codfish': 336,
'plymouth': 337,
'charterers': 338,
'heavy': 339,
'exploiter': 340,
'prepoire': 341,
'mopes': 342,
'peer': 343,
'larking': 344,
'shae': 345,
'groupie': 346,
'littlefield': 347,
'gonzo': 348,
'policewoman': 349,
'thundercats': 350,
'pores': 351,
'skers': 352,
'dren': 353,
'arsewit': 354,
'willims': 355,
'violently': 356,
'wertmuller': 357,
'bitterman': 358,
'iordache': 359,
'lofaso': 360,
'overlook': 361,
'carreyed': 362,
'thou': 363,
'datta': 364,
'pounce': 365,
'shivery': 366,
'musical': 367,
'purrrrrrrrrrrrrrrr': 368,
'ahhhhhh': 369,
'daerden': 370,
'zeon': 372,
'stamped': 373,
'korda': 374,
'simpatico': 375,
'donnacha': 376,
'nothwest': 377,
'pit': 378,
'minding': 379,
'stribor': 380,
'prequel': 381,
'shakesphere': 382,
'harbour': 383,
'incoming': 384,
'leena': 385,
'undercurrent': 386,
'python': 387,
'paging': 388,
'crinkled': 389,
'perpetuation': 390,
'brackish': 391,
'treacherously': 392,
'sforza': 393,
'niklas': 394,
'marginalized': 395,
'fincher': 396,
'msr': 397,
'dithering': 398,
'stamina': 399,
'affected': 400,
'redeeming': 401,
'retire': 402,
'stewardess': 403,
'impersonalized': 404,
'quaien': 405,
'sipped': 406,
'blurt': 407,
'bsa': 408,
'gesticulating': 409,
'constitute': 410,
'ahehehe': 411,
'meekly': 412,
'gosha': 413,
'zimmerframe': 414,
'spools': 415,
'inexistent': 416,
'therefore': 417,
'emilia': 418,
'turveydrop': 419,
'drier': 420,
'ways': 421,
'drinking': 422,
'maitlan': 423,
'sneha': 424,
'bakesfield': 425,
'rinse': 426,
'slimey': 427,
'lozano': 428,
'indigo': 429,
'tripping': 430,
'subsides': 431,
'deludes': 432,
'reviews': 433,
'spirituality': 434,
'insurance': 435,
'scriptors': 436,
'precedent': 437,
'telescoping': 438,
'sirico': 439,
'submissions': 440,
'urbisci': 441,
'loveability': 442,
'aswell': 443,
'tested': 444,
'isla': 445,
'contribute': 446,
'cahill': 447,
'cohan': 449,
'costello': 450,
'dorkiness': 451,
'shaw': 452,
'crooks': 453,
'bulk': 454,
'porn': 455,
'windfall': 456,
'mehmet': 457,
'engel': 458,
'schizo': 459,
'somber': 460,
'svengali': 461,
'towered': 462,
'witnessed': 463,
'worst': 464,
'scanned': 465,
'marber': 466,
'geez': 467,
'stalled': 468,
'averaged': 469,
'seaminess': 470,
'incidental': 471,
'stalk': 472,
'murals': 473,
'yas': 474,
'extremeley': 475,
'unmoored': 476,
'moralizing': 477,
'stoker': 478,
'oddest': 480,
'gabrielle': 481,
'munsters': 482,
'zestful': 483,
'tlog': 484,
'http': 485,
'houswives': 486,
'gras': 487,
'deceivingly': 488,
'overburdening': 490,
'francie': 491,
'americanime': 492,
'jurassic': 493,
'rendevous': 494,
'funner': 495,
'colony': 496,
'reminisced': 497,
'schwarzenberg': 498,
'drywall': 499,
'findings': 500,
'kidnap': 501,
'esp': 502,
'quandaries': 503,
'fishing': 505,
'snubbed': 506,
'juliette': 507,
'ideologue': 508,
'secondaries': 509,
'scratcher': 510,
'obsessive': 511,
'modernization': 512,
'analogies': 513,
'braided': 514,
'extremity': 515,
'daimajin': 516,
'warmongering': 517,
'characterise': 518,
'conspir': 519,
'jokesdespite': 520,
'frock': 521,
'craziest': 522,
'continuing': 523,
'bark': 524,
'depending': 525,
'hara': 526,
'glazen': 527,
'corruption': 528,
'captivated': 529,
'teabagging': 530,
'renditions': 531,
'quitte': 532,
'upsidedownor': 533,
'cpo': 534,
'aggrandizement': 535,
'slackly': 536,
'beatlemaniac': 537,
'delli': 538,
'geared': 539,
'cleopatra': 540,
'jurisprudence': 541,
'confronts': 542,
'mishap': 543,
'caps': 544,
'muscats': 545,
'wishbone': 546,
'yomiuri': 547,
'isham': 548,
'quest': 549,
'rappers': 550,
'marilee': 551,
'jasons': 552,
'migenes': 553,
'comprises': 554,
'alls': 555,
'implausability': 556,
'torch': 557,
'settlements': 558,
'invisibly': 559,
'toyman': 560,
'windu': 561,
'dooooom': 562,
'whiny': 563,
'empathise': 564,
'cozied': 565,
'milan': 566,
'unzip': 567,
'hera': 568,
'marnack': 569,
'assult': 570,
'referendum': 571,
'louvers': 572,
'deherrera': 573,
'stubbs': 574,
'baloney': 575,
'martains': 576,
'manipulate': 577,
'frogmarched': 578,
'surmount': 579,
'elene': 580,
'grinders': 581,
'hybridnot': 582,
'binding': 583,
'significance': 584,
'texas': 585,
'zaps': 586,
'halfhearted': 587,
'donkey': 588,
'jamie': 589,
'casted': 590,
'mcaffe': 591,
'striving': 592,
'vegetarians': 593,
'jennifers': 594,
'decimals': 595,
'orchestrating': 596,
'gard': 597,
'himmler': 598,
'plussed': 599,
'cambodian': 600,
'blankety': 601,
'refreshing': 602,
'gloomy': 603,
'belgian': 604,
'brutal': 605,
'courtland': 606,
'screenlay': 607,
'outclassed': 608,
'ruthlessreviews': 609,
'schoolish': 610,
'baggy': 611,
'rwandese': 612,
'weasing': 613,
'worthlessness': 614,
'zarah': 615,
'scatchard': 616,
'frederik': 617,
'mias': 618,
'raksha': 619,
'definite': 620,
'cooling': 621,
'seraphim': 622,
'vanguard': 623,
'asano': 624,
'maimed': 625,
'wohl': 626,
'heuy': 627,
'balding': 628,
'earnt': 629,
'separately': 630,
'unearthed': 632,
'parvenu': 633,
'gunked': 634,
'tanaaz': 635,
'elitism': 636,
'reasonbaly': 637,
'pardoning': 638,
'saluja': 639,
'taximeter': 640,
'choreographic': 641,
'discipline': 642,
'armaments': 644,
'beswicke': 645,
'geeze': 646,
'cutter': 647,
'happenin': 648,
'howlers': 649,
'sputtered': 650,
'irreparably': 651,
'informality': 652,
'glancingly': 653,
'programme': 654,
'parlaying': 655,
'ghoul': 656,
'westmore': 657,
'philip': 658,
'chopping': 659,
'surfing': 660,
'raven': 661,
'popularize': 662,
'engulf': 663,
'carruthers': 664,
'czekh': 665,
'griswald': 666,
'verveen': 667,
'insistence': 668,
'weirdness': 669,
'wearing': 670,
'pills': 671,
'doomsville': 672,
'loreno': 673,
'maximally': 674,
'pestilence': 675,
'departing': 676,
'beany': 677,
'andr': 678,
'sores': 679,
'legged': 680,
'alloy': 681,
'rowdies': 682,
'sanitizes': 683,
'sharman': 684,
'honduras': 685,
'glares': 686,
'texel': 687,
'factness': 688,
'banded': 689,
'swathed': 690,
'shocky': 691,
'confusathon': 692,
'shuns': 693,
'commender': 694,
'lucinenne': 695,
'chapin': 696,
'ghosties': 697,
'feirstein': 698,
'rip': 699,
'illustrates': 700,
'earthbound': 701,
'behavioural': 702,
'speeded': 703,
'broome': 704,
'unassaulted': 705,
'wooster': 706,
'vindicates': 708,
'gabbar': 709,
'braintrust': 710,
'progressed': 711,
'terminatrix': 712,
'verbalizations': 713,
'dupia': 714,
'excactly': 715,
'suits': 716,
'babaji': 717,
'raschid': 718,
'door': 719,
'subset': 720,
'sheng': 721,
'traces': 722,
'hearken': 723,
'councilwoman': 724,
'mordant': 725,
'tsunami': 726,
'savings': 727,
'wrightly': 728,
'spite': 729,
'efficient': 730,
'beaty': 731,
'jingoistic': 732,
'ashknenazi': 733,
'belt': 734,
'peevishness': 735,
'pranks': 736,
'dingaling': 737,
'confederation': 738,
'morning': 739,
'hershey': 740,
'yablans': 741,
'pontificate': 742,
'hotdog': 743,
'ochoa': 744,
'definable': 745,
'bonanzas': 746,
'laural': 747,
'deus': 748,
'archrivals': 749,
'daal': 750,
'unintended': 751,
'dominique': 752,
'lattices': 753,
'ball': 754,
'demeaned': 755,
'planter': 756,
'francis': 757,
'favourites': 758,
'tedious': 759,
'matlock': 760,
'palmentari': 761,
'animaster': 762,
'daydreams': 763,
'palo': 764,
'mol': 766,
'marshal': 767,
'fleece': 768,
'bookending': 769,
'offed': 770,
'pensacolians': 771,
'wean': 772,
'fait': 773,
'glaciers': 774,
'hoofing': 775,
'muffled': 776,
'revitalized': 777,
'armless': 778,
'tis': 779,
'benjy': 780,
'wendigo': 781,
'haughty': 782,
'edwige': 783,
'magnetism': 784,
'fortyish': 785,
'obese': 786,
'cinmatographe': 787,
'ilu': 789,
'dissaude': 790,
'takkyuubin': 791,
'sollace': 792,
'persue': 793,
'scheduled': 794,
'prehysteria': 795,
'attracting': 796,
'arden': 797,
'omc': 799,
'unquestionably': 801,
'bostwick': 802,
'ornella': 803,
'poochie': 804,
'argo': 805,
'ninga': 806,
'shelf': 807,
'litigation': 808,
'ballet': 809,
'grooming': 810,
'evidente': 811,
'righetti': 812,
'reliability': 813,
'incapacitating': 814,
'allay': 815,
'melvyn': 816,
'lyons': 817,
'roams': 818,
'steinberg': 819,
'unsettles': 820,
'robotnik': 821,
'schindlers': 822,
'berkowitz': 823,
'uppercrust': 824,
'markel': 825,
'ecologically': 826,
'syvlie': 827,
'airports': 828,
'independence': 829,
'inauthentic': 830,
'sufferings': 831,
'fellner': 832,
'sternly': 833,
'orlans': 834,
'funkions': 835,
'regiments': 836,
'tranquility': 837,
'naista': 838,
'montezuma': 839,
'carnosaur': 840,
'astra': 841,
'manifests': 842,
'thieson': 843,
'bib': 844,
'simmond': 845,
'prosthetic': 846,
'uta': 847,
'viscerally': 848,
'gaolers': 849,
'learner': 850,
'cannibalize': 851,
'classic': 852,
'gilt': 853,
'bania': 854,
'lanquage': 856,
'mauritania': 857,
'oddballs': 858,
'gnaw': 859,
'treat': 860,
'disregarding': 861,
'haley': 862,
'fall': 863,
'hickman': 864,
'oppress': 865,
'mcdonell': 866,
'blowtorches': 867,
'kneecaps': 868,
'initialize': 869,
'hottub': 870,
'foudre': 871,
'pointblank': 872,
'laughting': 873,
'merritt': 874,
'singlet': 875,
'commandments': 876,
'jlh': 877,
'abrahams': 878,
'recut': 879,
'hydraulics': 880,
'thomson': 881,
'greeeeeat': 882,
'unimaginably': 883,
'yahoo': 884,
'galling': 885,
'bowl': 886,
'rotted': 887,
'compositely': 888,
'ungratifying': 889,
'flunked': 890,
'mum': 891,
'queens': 892,
'avati': 893,
'hester': 894,
'tiffani': 895,
'treasonous': 896,
'alsobrook': 897,
'estonia': 898,
'wathced': 899,
'climatic': 900,
'behold': 901,
'printer': 902,
'winslet': 903,
'minutes': 904,
'glaringly': 905,
'quatermaine': 906,
'grainy': 907,
'nowheres': 908,
'lordship': 909,
'trespassing': 910,
'reorder': 911,
'fizzles': 912,
'banana': 913,
'diner': 914,
'carotte': 915,
'nina': 916,
'jabbering': 917,
'michale': 918,
'dispersement': 919,
'insignificance': 920,
'obscenely': 921,
'riccardo': 922,
'killed': 923,
'truffle': 924,
'vivian': 925,
'aristotle': 926,
'emilie': 927,
'vacancy': 928,
'changruputra': 929,
'edelman': 931,
'kar': 932,
'trotta': 933,
'thickener': 934,
'rajpal': 935,
'windstorm': 936,
'sylke': 937,
'fascinating': 938,
'haj': 939,
'iconor': 940,
'bensen': 941,
'trelkovski': 942,
'filmcow': 943,
'mente': 944,
'pontiac': 946,
'carltio': 947,
'hillside': 948,
'greatfully': 949,
'makepease': 950,
'pungency': 952,
'decides': 953,
'migraine': 954,
'condensing': 955,
'crowned': 956,
'cop': 957,
'mythos': 958,
'crandall': 959,
'merendino': 960,
'unrecognizable': 961,
'apparatchik': 962,
'swimmers': 963,
'campfield': 965,
'eastward': 966,
'smight': 967,
'valdez': 968,
'guises': 969,
'cameroon': 970,
'segregating': 971,
'hardin': 972,
'krupa': 973,
'woodfin': 974,
'albans': 975,
'kitchener': 976,
'pharmaceutical': 977,
'lithe': 978,
'responded': 979,
'ebullient': 980,
'fonzie': 981,
'cramer': 982,
'morena': 983,
'contemp': 984,
'pods': 985,
'sherwood': 986,
'schuer': 987,
'dck': 988,
'reinstall': 989,
'spenny': 990,
'daz': 992,
'tantalizing': 993,
'microsoft': 994,
'symbolically': 995,
'nationalities': 996,
'felisberto': 997,
'stan': 998,
'shubert': 999,
...}

``````
``````

In [26]:

def update_input_layer(review):

global layer_0

# clear out previous state, reset the layer to be all 0s
layer_0 *= 0
for word in review.split(" "):
layer_0[0][word2index[word]] += 1

update_input_layer(reviews[0])

``````
``````

In [27]:

layer_0

``````
``````

Out[27]:

array([[ 18.,   0.,   0., ...,   0.,   0.,   0.]])

``````
``````

In [60]:

y = [1 if l=="POSITIVE" else 0 for l in labels]
y[:10]

``````
``````

Out[60]:

[1, 0, 1, 0, 1, 0, 1, 0, 1, 0]

``````
``````

In [28]:

def get_target_for_label(label):
if(label == 'POSITIVE'):
return 1
else:
return 0

``````
``````

In [29]:

labels[0]

``````
``````

Out[29]:

'POSITIVE'

``````
``````

In [30]:

get_target_for_label(labels[0])

``````
``````

Out[30]:

1

``````
``````

In [31]:

labels[1]

``````
``````

Out[31]:

'NEGATIVE'

``````
``````

In [32]:

get_target_for_label(labels[1])

``````
``````

Out[32]:

0

``````

# Project 3: Building a Neural Network

• 3 layer neural network
• no non-linearity in hidden layer
• use our functions to create the training data
• create a "pre_process_data" function to create vocabulary for our training data generating functions
• modify "train" to train over the entire corpus

### Where to Get Help if You Need it

Generating the dataset

``````

In [49]:

a = [[4,5]]
print(a)
a.append([6])
a

``````
``````

[[4, 5]]

Out[49]:

[[4, 5], [6]]

``````
``````

In [51]:

x = []
for review in reviews:
update_input_layer(review)
x.append(layer_0)
x[:5]

``````
``````

Out[51]:

[array([[ 24.,   0.,   0., ...,   0.,   0.,   0.]]),
array([[ 24.,   0.,   0., ...,   0.,   0.,   0.]]),
array([[ 24.,   0.,   0., ...,   0.,   0.,   0.]]),
array([[ 24.,   0.,   0., ...,   0.,   0.,   0.]]),
array([[ 24.,   0.,   0., ...,   0.,   0.,   0.]])]

``````
``````

In [53]:

x = np.array(x)
x[:5]

``````
``````

Out[53]:

array([[[ 24.,   0.,   0., ...,   0.,   0.,   0.]],

[[ 24.,   0.,   0., ...,   0.,   0.,   0.]],

[[ 24.,   0.,   0., ...,   0.,   0.,   0.]],

[[ 24.,   0.,   0., ...,   0.,   0.,   0.]],

[[ 24.,   0.,   0., ...,   0.,   0.,   0.]]])

``````

The target dataset

``````

In [55]:

y = [get_target_for_label(l) for l in labels]
for i in range(10):
print(labels[i], y[i])
y[:20]

``````
``````

POSITIVE 1
NEGATIVE 0
POSITIVE 1
NEGATIVE 0
POSITIVE 1
NEGATIVE 0
POSITIVE 1
NEGATIVE 0
POSITIVE 1
NEGATIVE 0

Out[55]:

[1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0]

``````
``````

In [ ]:

import time
import sys
import numpy as np

class SentimentNetwork(object):
def __init__(self, reviews, labels, hidden_nodes=10, output_nodes=1, learning_rate=0.1):
# set our random number generator
np.random.seed(1)

self.pre_process_data(reviews, labels)

self.init_network(len(self.review_vocab),hidden_nodes, 1, learning_rate)

print('NeuralNet intiated!')
print('Nodes:', self.input_nodes, self.hidden_nodes, self.output_nodes)
print('learning rate: ', self.learning_rate)

def init_network(self, input_nodes, hidden_nodes, output_nodes, learning_rate):
# Set number of nodes in input, hidden and output layers.
self.input_nodes = input_nodes
self.hidden_nodes = hidden_nodes
self.output_nodes = output_nodes

# Initialize weights
self.weights_0_1 = np.zeros((self.input_nodes,self.hidden_nodes))

self.weights_1_2 = np.random.normal(0.0, self.output_nodes**-0.5,
(self.hidden_nodes, self.output_nodes))

self.learning_rate = learning_rate
self.layer_0 = np.zeros((1,input_nodes))

def sigmoid(self, x):
return 1 / (1 + np.exp(-x))

def sigmoid_output_2_derivative(self,output):
return output * (1 - output)

def pre_process_data(self, reviews, labels):
assert len(reviews) == len(labels)

#self.y = [1 if label=="POSITIVE" else 0 for label in labels]

review_vocab = set()
for review in reviews:
for word in review.split(" "):
self.review_vocab = list(review_vocab)

label_vocab = set()
for label in labels:

self.label_vocab = list(label_vocab)

self.review_vocab_size = len(self.review_vocab)
self.label_vocab_size = len(self.label_vocab)

self.word2index = {}
for i, word in enumerate(self.review_vocab):
self.word2index[word] = i

self.label2index = {}
for i, label in enumerate(self.label_vocab):
self.label2index[label] = i

def get_target_for_label(self, label):
if(label == 'POSITIVE'):
return 1
else:
return 0

def update_input_layer(self,review):

# clear out previous state, reset the layer to be all 0s
self.layer_0 *= 0
for word in review.split(" "):
if(word in self.word2index.keys()):
self.layer_0[0][self.word2index[word]] = 1

def train(self, inputs_list, targets_list):
assert len(inputs_list) == len(targets_list)
correct_so_far = 0
start = time.time()

for i in range(len(inputs_list)):
review = inputs_list[i]
label = targets_list[i]
label_value = self.get_target_for_label(label)

# Convert inputs list to 2d array
#inputs = np.array(inputs_list, ndmin=2).T
#targets = np.array(targets_list, ndmin=2).T

#### Implement the forward pass here ####
### Forward pass ###

self.update_input_layer(review)

# input layer
layer_1 = np.dot(self.layer_0, self.weights_0_1)

# output layer
layer_2 = self.sigmoid(np.dot(layer_1, self.weights_1_2))

#### Implement the backward pass here ####
### Backward pass ###

# TODO: Output error
layer_2_errors = layer_2 # Output layer error is the difference between desired target and actual output.
layer_2_delta = layer_2_errors * self.sigmoid_output_2_derivative(layer_2)

# TODO: Backpropagated error
layer_1_errors = np.dot(layer_2_delta, self.weights_1_2.T) # errors propagated to the hidden layer
layer_1_delta = layer_1_errors # hidden layer gradients

# TODO: Update the weights
self.weights_1_2 -= layer_1.T.dot(layer_2_delta) * self.learning_rate # update hidden-to-output weights with gradient descent step
self.weights_0_1 -= self.layer_0.T.dot(layer_1_delta) * self.learning_rate # update input-to-hidden weights with gradient descent step

if(np.abs(layer_2_errors) < 0.5):
correct_so_far += 1

reviews_per_second = i / float(time.time() - start)

sys.stdout.write("\rProgress:" + str(100 * i/float(len(inputs_list)))[:4] + "% Speed(reviews/sec):" + str(reviews_per_second)[0:5] + " #Correct:" + str(correct_so_far) + " #Trained:" + str(i+1) + " Training Accuracy:" + str(correct_so_far * 100 / float(i+1))[:4] + "%")
if(i % 2500 == 0):
print("")

def test(self, testing_reviews, testing_labels):

correct = 0

start = time.time()

for i in range(len(testing_reviews)):
pred = self.run(testing_reviews[i])
if(pred == testing_labels[i]):
correct += 1

reviews_per_second = i / float(time.time() - start)

sys.stdout.write("\rProgress:" + str(100 * i/float(len(testing_reviews)))[:4] \
+ "% Speed(reviews/sec):" + str(reviews_per_second)[0:5] \
+ "% #Correct:" + str(correct) + " #Tested:" + str(i+1) + " Testing Accuracy:" + str(correct * 100 / float(i+1))[:4] + "%")

def run(self, review):

# Input Layer
self.update_input_layer(review.lower())

# Hidden layer
layer_1 = self.layer_0.dot(self.weights_0_1)

# Output layer
layer_2 = self.sigmoid(layer_1.dot(self.weights_1_2))

if(layer_2[0] > 0.5):
return "POSITIVE"
else:
return "NEGATIVE"

def MSE(y, Y):
return np.mean((y-Y)**2)

``````
``````

In [141]:

### Set the hyperparameters here ###
epochs = 100
learning_rate = 0.04
hidden_nodes = 2
output_nodes = 1

mlp = SentimentNetwork(reviews[:-1000],labels[:-1000], learning_rate=1.0)

print(mlp.weights_0_1)
print(mlp.weights_1_2)

# evaluate our model before training (just to show how horrible it is)
mlp.test(reviews[-1000:],labels[-1000:])

``````
``````

NeuralNet intiated!
Nodes: 72810 10 1
learning rate:  1.0
[[ 0.  0.  0. ...,  0.  0.  0.]
[ 0.  0.  0. ...,  0.  0.  0.]
[ 0.  0.  0. ...,  0.  0.  0.]
...,
[ 0.  0.  0. ...,  0.  0.  0.]
[ 0.  0.  0. ...,  0.  0.  0.]
[ 0.  0.  0. ...,  0.  0.  0.]]
[[ 1.62434536]
[-0.61175641]
[-0.52817175]
[-1.07296862]
[ 0.86540763]
[-2.3015387 ]
[ 1.74481176]
[-0.7612069 ]
[ 0.3190391 ]
[-0.24937038]]
Progress:99.9% Speed(reviews/sec):446.7% #Correct:500 #Tested:1000 Testing Accuracy:50.0%

``````
``````

In [142]:

# train the network
print(mlp.learning_rate)
mlp.train(reviews[:-1000],labels[:-1000])

``````
``````

1.0
Progress:0.0% Speed(reviews/sec):0.0 #Correct:0 #Trained:1 Training Accuracy:0.0%
Progress:0.05% Speed(reviews/sec):70.68 #Correct:14 #Trained:15 Training Accuracy:93.3%

/Users/ko/anaconda/lib/python3.6/site-packages/ipykernel/__main__.py:36: RuntimeWarning: overflow encountered in exp

Progress:10.4% Speed(reviews/sec):94.26 #Correct:2500 #Trained:2501 Training Accuracy:99.9%
Progress:20.8% Speed(reviews/sec):97.80 #Correct:5000 #Trained:5001 Training Accuracy:99.9%
Progress:30.4% Speed(reviews/sec):98.13 #Correct:7312 #Trained:7313 Training Accuracy:99.9%

---------------------------------------------------------------------------
KeyboardInterrupt                         Traceback (most recent call last)
<ipython-input-142-71f3c6a6a52d> in <module>()
1 # train the network
2 print(mlp.learning_rate)
----> 3 mlp.train(reviews[:-1000],labels[:-1000])

<ipython-input-129-e0a9221a980e> in train(self, inputs_list, targets_list)
122             # TODO: Update the weights
123             self.weights_1_2 -= layer_1.T.dot(layer_2_delta) * self.learning_rate # update hidden-to-output weights with gradient descent step
--> 124             self.weights_0_1 -= self.layer_0.T.dot(layer_1_delta) * self.learning_rate # update input-to-hidden weights with gradient descent step
125
126             if(np.abs(layer_2_errors) < 0.5):

KeyboardInterrupt:

``````
``````

In [ ]:

print(mlp.weights_0_1)
print(mlp.weights_1_2)
mlp.test(reviews[-1000:],labels[-1000:])

``````
``````

In [ ]:

``````