Face Generation

In this project, you'll use generative adversarial networks to generate new images of faces.

Get the Data

You'll be using two datasets in this project:

  • MNIST
  • CelebA

Since the celebA dataset is complex and you're doing GANs in a project for the first time, we want you to test your neural network on MNIST before CelebA. Running the GANs on MNIST will allow you to see how well your model trains sooner.

If you're using FloydHub, set data_dir to "/input" and use the FloydHub data ID "R5KrjnANiKVhLWAkpXhNBe".


In [2]:
data_dir = './data'

# FloydHub - Use with data ID "R5KrjnANiKVhLWAkpXhNBe"
#data_dir = '/input'


"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
import helper

helper.download_extract('mnist', data_dir)
helper.download_extract('celeba', data_dir)


Downloading celeba: 0.00B [00:00, ?B/s]
Found mnist Data
Downloading celeba:   1%|          | 11.1M/1.44G [00:21<45:59, 519KB/s]    
---------------------------------------------------------------------------
KeyboardInterrupt                         Traceback (most recent call last)
<ipython-input-2-2fe1a6e71a9d> in <module>()
     11 
     12 helper.download_extract('mnist', data_dir)
---> 13 helper.download_extract('celeba', data_dir)

/Users/ko/git/deep-learning/face_generation/helper.py in download_extract(database_name, data_path)
    158                 url,
    159                 save_path,
--> 160                 pbar.hook)
    161 
    162     assert hashlib.md5(open(save_path, 'rb').read()).hexdigest() == hash_code, \

/Users/ko/anaconda/lib/python3.6/urllib/request.py in urlretrieve(url, filename, reporthook, data)
    275 
    276             while True:
--> 277                 block = fp.read(bs)
    278                 if not block:
    279                     break

/Users/ko/anaconda/lib/python3.6/http/client.py in read(self, amt)
    447             # Amount is given, implement using readinto
    448             b = bytearray(amt)
--> 449             n = self.readinto(b)
    450             return memoryview(b)[:n].tobytes()
    451         else:

/Users/ko/anaconda/lib/python3.6/http/client.py in readinto(self, b)
    491         # connection, and the user is reading more bytes than will be provided
    492         # (for example, reading in 1k chunks)
--> 493         n = self.fp.readinto(b)
    494         if not n and b:
    495             # Ideally, we would raise IncompleteRead if the content-length

/Users/ko/anaconda/lib/python3.6/socket.py in readinto(self, b)
    584         while True:
    585             try:
--> 586                 return self._sock.recv_into(b)
    587             except timeout:
    588                 self._timeout_occurred = True

/Users/ko/anaconda/lib/python3.6/ssl.py in recv_into(self, buffer, nbytes, flags)
   1000                   "non-zero flags not allowed in calls to recv_into() on %s" %
   1001                   self.__class__)
-> 1002             return self.read(nbytes, buffer)
   1003         else:
   1004             return socket.recv_into(self, buffer, nbytes, flags)

/Users/ko/anaconda/lib/python3.6/ssl.py in read(self, len, buffer)
    863             raise ValueError("Read on closed or unwrapped SSL socket.")
    864         try:
--> 865             return self._sslobj.read(len, buffer)
    866         except SSLError as x:
    867             if x.args[0] == SSL_ERROR_EOF and self.suppress_ragged_eofs:

/Users/ko/anaconda/lib/python3.6/ssl.py in read(self, len, buffer)
    623         """
    624         if buffer is not None:
--> 625             v = self._sslobj.read(len, buffer)
    626         else:
    627             v = self._sslobj.read(len)

KeyboardInterrupt: 

Explore the Data

MNIST

As you're aware, the MNIST dataset contains images of handwritten digits. You can view the first number of examples by changing show_n_images.


In [3]:
show_n_images = 25

"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
%matplotlib inline
import os
from glob import glob
from matplotlib import pyplot

mnist_images = helper.get_batch(glob(os.path.join(data_dir, 'mnist/*.jpg'))[:show_n_images], 28, 28, 'L')
pyplot.imshow(helper.images_square_grid(mnist_images, 'L'), cmap='gray')


Out[3]:
<matplotlib.image.AxesImage at 0x111c19630>

CelebA

The CelebFaces Attributes Dataset (CelebA) dataset contains over 200,000 celebrity images with annotations. Since you're going to be generating faces, you won't need the annotations. You can view the first number of examples by changing show_n_images.


In [ ]:
show_n_images = 25

"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
mnist_images = helper.get_batch(glob(os.path.join(data_dir, 'img_align_celeba/*.jpg'))[:show_n_images], 28, 28, 'RGB')
pyplot.imshow(helper.images_square_grid(mnist_images, 'RGB'))

Preprocess the Data

Since the project's main focus is on building the GANs, we'll preprocess the data for you. The values of the MNIST and CelebA dataset will be in the range of -0.5 to 0.5 of 28x28 dimensional images. The CelebA images will be cropped to remove parts of the image that don't include a face, then resized down to 28x28.

The MNIST images are black and white images with a single color channel while the CelebA images have 3 color channels (RGB color channel).

Build the Neural Network

You'll build the components necessary to build a GANs by implementing the following functions below:

  • model_inputs
  • discriminator
  • generator
  • model_loss
  • model_opt
  • train

Check the Version of TensorFlow and Access to GPU

This will check to make sure you have the correct version of TensorFlow and access to a GPU


In [4]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
from distutils.version import LooseVersion
import warnings
import tensorflow as tf

# Check TensorFlow Version
assert LooseVersion(tf.__version__) >= LooseVersion('1.0'), 'Please use TensorFlow version 1.0 or newer.  You are using {}'.format(tf.__version__)
print('TensorFlow Version: {}'.format(tf.__version__))

# Check for a GPU
if not tf.test.gpu_device_name():
    warnings.warn('No GPU found. Please use a GPU to train your neural network.')
else:
    print('Default GPU Device: {}'.format(tf.test.gpu_device_name()))


TensorFlow Version: 1.1.0
/Users/ko/anaconda/lib/python3.6/site-packages/ipykernel_launcher.py:14: UserWarning: No GPU found. Please use a GPU to train your neural network.
  

Input

Implement the model_inputs function to create TF Placeholders for the Neural Network. It should create the following placeholders:

  • Real input images placeholder with rank 4 using image_width, image_height, and image_channels.
  • Z input placeholder with rank 2 using z_dim.
  • Learning rate placeholder with rank 0.

Return the placeholders in the following the tuple (tensor of real input images, tensor of z data)


In [52]:
import problem_unittests as tests

def model_inputs(image_width, image_height, image_channels, z_dim):
    """
    Create the model inputs
    :param image_width: The input image width
    :param image_height: The input image height
    :param image_channels: The number of image channels
    :param z_dim: The dimension of Z
    :return: Tuple of (tensor of real input images, tensor of z data, learning rate)
    """
    # TODO: Implement Function
    
    real_image = tf.placeholder(tf.float32, (None, image_width, image_height, 
                                             image_channels), name='real_image')
    z_data = tf.placeholder(tf.float32, (None, z_dim), name="z_data")
    learning_rate = tf.placeholder(tf.float32, name="learning_rate")

    return real_image, z_data, learning_rate


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_inputs(model_inputs)


Tests Passed

Discriminator

Implement discriminator to create a discriminator neural network that discriminates on images. This function should be able to reuse the variables in the neural network. Use tf.variable_scope with a scope name of "discriminator" to allow the variables to be reused. The function should return a tuple of (tensor output of the discriminator, tensor logits of the discriminator).


In [49]:
def discriminator(images, reuse=False, alpha=0.001):
    """
    Create the discriminator network
    :param images: Tensor of input image(s)
    :param reuse: Boolean if the weights should be reused
    :return: Tuple of (tensor output of the discriminator, tensor logits of the discriminator)
    """
    # TODO: Implement Function
    
    with tf.variable_scope('discriminator', reuse=reuse):
        # layer 1 in 28*28*(1 or 3)
        conv_1 = tf.layers.conv2d(images, 16, 2, 2, padding='same')
        conv_1 = tf.maximum(conv_1, conv_1*alpha)
        
        # layer 2 in 14x14*16
        conv_2 = tf.layers.conv2d(conv_1, 32, 2, 2, padding='same')
        conv_2 = tf.layers.batch_normalization(conv_2)
        conv_2 = tf.maximum(conv_2, conv_2*alpha)
        
        # layer 3 in 7x7*32
        conv_3 = tf.layers.conv2d(conv_2, 64, 2, 2, padding='same')
        conv_3 = tf.layers.batch_normalization(conv_3)
        conv_3 = tf.maximum(conv_3, conv_3*alpha)

        # output in 4x4x64
        flat = tf.reshape(conv_2, (-1, 32*4*4))
        logits = tf.layers.dense(flat, 1)
        output = tf.sigmoid(logits)
    
    return output, logits


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_discriminator(discriminator, tf)


Tests Passed

Generator

Implement generator to generate an image using z. This function should be able to reuse the variables in the neural network. Use tf.variable_scope with a scope name of "generator" to allow the variables to be reused. The function should return the generated 28 x 28 x out_channel_dim images.


In [154]:
def generator(z, out_channel_dim, is_train=True, alpha=0.001):
    """
    Create the generator network
    :param z: Input z
    :param out_channel_dim: The number of channels in the output image
    :param is_train: Boolean if generator is being used for training
    :return: The tensor output of the generator
    """
    # TODO: Implement Function
    
    with tf.variable_scope('generator', reuse=not is_train):
        # layer 1 input is z, a flat vector
        layer_1 = tf.layers.dense(z, 2*2*512)
        layer_1 = tf.reshape(layer_1,(-1,2,2,512))
        
        # layer 2 - 2x2x512
        conv_1 = tf.layers.conv2d_transpose(layer_1, 256, 2, 2, padding='same')
        conv_1 = tf.maximum(conv_1, conv_1*alpha)
        
        # layer 3 - 4x4x256
        conv_2 = tf.layers.conv2d_transpose(conv_1, 128, 4, 1, padding='valid')
        conv_2 = tf.layers.batch_normalization(conv_2, training=is_train)
        conv_2 = tf.maximum(conv_2, conv_2*alpha)
        
        # layer 4 - 7x7x128
        conv_3 = tf.layers.conv2d_transpose(conv_2, 64, 2, 2, padding='same')
        conv_3 = tf.layers.batch_normalization(conv_3, training=is_train)
        conv_3 = tf.maximum(conv_3, conv_3*alpha)
        
        # layer 5 - 14x14x128
        conv_4 = tf.layers.conv2d_transpose(conv_3, 32, 2, 2, padding='same')
        conv_4 = tf.maximum(conv_4, conv_4*alpha)
        
        # output - 28x28x64
        logits = tf.layers.conv2d_transpose(conv_4, out_channel_dim, 2, 1, padding='same')
        output = tf.tanh(logits)
        
    return output


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_generator(generator, tf)


Tests Passed

Loss

Implement model_loss to build the GANs for training and calculate the loss. The function should return a tuple of (discriminator loss, generator loss). Use the following functions you implemented:

  • discriminator(images, reuse=False)
  • generator(z, out_channel_dim, is_train=True)

In [155]:
def model_loss(input_real, input_z, out_channel_dim, smooth=0.9):
    """
    Get the loss for the discriminator and generator
    :param input_real: Images from the real dataset
    :param input_z: Z input
    :param out_channel_dim: The number of channels in the output image
    :return: A tuple of (discriminator loss, generator loss)
    """
    # TODO: Implement Function
    g_model = generator(input_z, out_channel_dim)
    
    d_output_real, d_logits_real = discriminator(input_real)
    d_output_fake, d_logits_fake = discriminator(g_model, reuse=True)
    
    d_loss_real = tf.reduce_mean(
                  tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_real, 
                                                          labels=tf.ones_like(d_logits_real) * (1 - smooth)))
    d_loss_fake = tf.reduce_mean(
                  tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, 
                                                          labels=tf.zeros_like(d_logits_real)))
    d_loss = d_loss_real + d_loss_fake

    g_loss = tf.reduce_mean(
             tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake,
                                                     labels=tf.ones_like(d_logits_fake)))
    
    return d_loss, g_loss


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_loss(model_loss)


Tests Passed

Optimization

Implement model_opt to create the optimization operations for the GANs. Use tf.trainable_variables to get all the trainable variables. Filter the variables with names that are in the discriminator and generator scope names. The function should return a tuple of (discriminator training operation, generator training operation).


In [160]:
def model_opt(d_loss, g_loss, learning_rate, beta1):
    """
    Get optimization operations
    :param d_loss: Discriminator loss Tensor
    :param g_loss: Generator loss Tensor
    :param learning_rate: Learning Rate Placeholder
    :param beta1: The exponential decay rate for the 1st moment in the optimizer
    :return: A tuple of (discriminator training operation, generator training operation)
    """
    # TODO: Implement Function
    
    # Get the trainable_variables, split into G and D parts
    t_vars = tf.trainable_variables()
    g_vars = [var for var in t_vars if var.name.startswith("generator")]
    d_vars = [var for var in t_vars if var.name.startswith("discriminator")]
    
    # batch normalization needs to update the graph
    update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
    g_updates  = [opt for opt in update_ops if opt.name.startswith('generator')]
    with tf.control_dependencies(g_updates):
        d_train_opt = tf.train.AdamOptimizer(learning_rate).minimize(d_loss, var_list=d_vars)
        g_train_opt = tf.train.AdamOptimizer(learning_rate).minimize(g_loss, var_list=g_vars)
    
    return d_train_opt, g_train_opt


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_opt(model_opt, tf)


Tests Passed

Neural Network Training

Show Output

Use this function to show the current output of the generator during training. It will help you determine how well the GANs is training.


In [157]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
import numpy as np

def show_generator_output(sess, n_images, input_z, out_channel_dim, image_mode):
    """
    Show example output for the generator
    :param sess: TensorFlow session
    :param n_images: Number of Images to display
    :param input_z: Input Z Tensor
    :param out_channel_dim: The number of channels in the output image
    :param image_mode: The mode to use for images ("RGB" or "L")
    """
    cmap = None if image_mode == 'RGB' else 'gray'
    z_dim = input_z.get_shape().as_list()[-1]
    example_z = np.random.uniform(-1, 1, size=[n_images, z_dim])

    samples = sess.run(
        generator(input_z, out_channel_dim, False),
        feed_dict={input_z: example_z})

    images_grid = helper.images_square_grid(samples, image_mode)
    pyplot.imshow(images_grid, cmap=cmap)
    pyplot.show()

Train

Implement train to build and train the GANs. Use the following functions you implemented:

  • model_inputs(image_width, image_height, image_channels, z_dim)
  • model_loss(input_real, input_z, out_channel_dim)
  • model_opt(d_loss, g_loss, learning_rate, beta1)

Use the show_generator_output to show generator output while you train. Running show_generator_output for every batch will drastically increase training time and increase the size of the notebook. It's recommended to print the generator output every 100 batches.


In [161]:
def train(epoch_count, batch_size, z_dim, learning_rate, beta1, get_batches, data_shape, data_image_mode):
    """
    Train the GAN
    :param epoch_count: Number of epochs
    :param batch_size: Batch Size
    :param z_dim: Z dimension
    :param learning_rate: Learning Rate
    :param beta1: The exponential decay rate for the 1st moment in the optimizer
    :param get_batches: Function to get batches
    :param data_shape: Shape of the data
    :param data_image_mode: The image mode to use for images ("RGB" or "L")
    """
    # TODO: Build Model
    
    # input shape
    _, image_width, image_height, image_channels = data_shape
    
    # model inputs
    input_real, input_z, learn_rate = model_inputs(image_width, image_height, image_channels, z_dim)
    
    # model losses
    d_loss, g_loss = model_loss(input_real, input_z, image_channels)
    
    # optimization
    d_opt, g_opt = model_opt(d_loss, g_loss, learning_rate, beta1)
    
    saver = tf.train.Saver()
    
    samples = []
    losses = []
    steps = 0
    print_loss_every = 10
    show_images_every = 80
    
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        for epoch_i in range(epoch_count):
            for batch_images in get_batches(batch_size):
                # TODO: Train Model
                
                # Get images, reshape and rescale to pass to D
                # images are b/w -0.5 to 0.5, so rescaling to -1 to 1
                batch_images = batch_images * 2
                
                # Sample random noise for G
                batch_z = np.random.uniform(-1, 1, size=(batch_size,z_dim))
                batch_images = batch_images * 2.0
                
                # Run optimizers
                _ = sess.run(d_opt, feed_dict={input_real: batch_images, input_z: batch_z})
                _ = sess.run(g_opt, feed_dict={input_z: batch_z})
                
                steps += 1
                
                # get the losses and print them out every so often
                if steps % print_loss_every == 0:
                    train_loss_d = sess.run(d_loss, {input_z: batch_z, input_real: batch_images})
                    train_loss_g = g_loss.eval({input_z: batch_z})
                    
                    print("Epoch {}/{}...".format(epoch_i+1, epoch_count), 
                          "Discriminator Loss: {:.4f}...".format(train_loss_d),
                          "Generator Loss: {:.4f}".format(train_loss_g))
                    # Save losses to view after training
                    losses.append((train_loss_d, train_loss_g))
                
                # show generated images every so often
                if steps % show_images_every == 0:
                    show_generator_output(sess, 20, input_z, image_channels, data_image_mode)

MNIST

Test your GANs architecture on MNIST. After 2 epochs, the GANs should be able to generate images that look like handwritten digits. Make sure the loss of the generator is lower than the loss of the discriminator or close to 0.


In [162]:
batch_size = 64
z_dim = 128
learning_rate = 0.001
beta1 = 0.5

"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
epochs = 2

mnist_dataset = helper.Dataset('mnist', glob(os.path.join(data_dir, 'mnist/*.jpg')))
with tf.Graph().as_default():
    train(epochs, batch_size, z_dim, learning_rate, beta1, mnist_dataset.get_batches,
          mnist_dataset.shape, mnist_dataset.image_mode)


Epoch 1/2... Discriminator Loss: 0.9702... Generator Loss: 0.7468
Epoch 1/2... Discriminator Loss: 0.8665... Generator Loss: 0.9325
Epoch 1/2... Discriminator Loss: 0.7836... Generator Loss: 1.0624
Epoch 1/2... Discriminator Loss: 0.6711... Generator Loss: 1.2897
Epoch 1/2... Discriminator Loss: 0.5846... Generator Loss: 1.5425
Epoch 1/2... Discriminator Loss: 0.4950... Generator Loss: 1.9885
Epoch 1/2... Discriminator Loss: 0.4206... Generator Loss: 2.5377
Epoch 1/2... Discriminator Loss: 0.3874... Generator Loss: 2.9625
Epoch 1/2... Discriminator Loss: 0.3624... Generator Loss: 3.5964
Epoch 1/2... Discriminator Loss: 0.3508... Generator Loss: 4.2715
Epoch 1/2... Discriminator Loss: 0.3414... Generator Loss: 4.7239
Epoch 1/2... Discriminator Loss: 0.3457... Generator Loss: 4.2924
Epoch 1/2... Discriminator Loss: 0.3601... Generator Loss: 3.6097
Epoch 1/2... Discriminator Loss: 0.3454... Generator Loss: 4.1283
Epoch 1/2... Discriminator Loss: 0.3420... Generator Loss: 4.3620
Epoch 1/2... Discriminator Loss: 0.3415... Generator Loss: 4.4333
Epoch 1/2... Discriminator Loss: 0.3362... Generator Loss: 4.8815
Epoch 1/2... Discriminator Loss: 0.3353... Generator Loss: 5.0831
Epoch 1/2... Discriminator Loss: 0.3336... Generator Loss: 5.4022
Epoch 1/2... Discriminator Loss: 0.3326... Generator Loss: 5.5184
Epoch 1/2... Discriminator Loss: 0.3321... Generator Loss: 5.6038
Epoch 1/2... Discriminator Loss: 0.3311... Generator Loss: 5.7727
Epoch 1/2... Discriminator Loss: 0.3307... Generator Loss: 5.8438
Epoch 1/2... Discriminator Loss: 0.3310... Generator Loss: 5.8691
Epoch 1/2... Discriminator Loss: 0.3297... Generator Loss: 6.0147
---------------------------------------------------------------------------
KeyboardInterrupt                         Traceback (most recent call last)
<ipython-input-162-39df02a7bdec> in <module>()
     12 with tf.Graph().as_default():
     13     train(epochs, batch_size, z_dim, learning_rate, beta1, mnist_dataset.get_batches,
---> 14           mnist_dataset.shape, mnist_dataset.image_mode)

<ipython-input-161-8d4ade32da65> in train(epoch_count, batch_size, z_dim, learning_rate, beta1, get_batches, data_shape, data_image_mode)
     48 
     49                 # Run optimizers
---> 50                 _ = sess.run(d_opt, feed_dict={input_real: batch_images, input_z: batch_z})
     51                 _ = sess.run(g_opt, feed_dict={input_z: batch_z})
     52 

/Users/ko/anaconda/lib/python3.6/site-packages/tensorflow/python/client/session.py in run(self, fetches, feed_dict, options, run_metadata)
    776     try:
    777       result = self._run(None, fetches, feed_dict, options_ptr,
--> 778                          run_metadata_ptr)
    779       if run_metadata:
    780         proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)

/Users/ko/anaconda/lib/python3.6/site-packages/tensorflow/python/client/session.py in _run(self, handle, fetches, feed_dict, options, run_metadata)
    980     if final_fetches or final_targets:
    981       results = self._do_run(handle, final_targets, final_fetches,
--> 982                              feed_dict_string, options, run_metadata)
    983     else:
    984       results = []

/Users/ko/anaconda/lib/python3.6/site-packages/tensorflow/python/client/session.py in _do_run(self, handle, target_list, fetch_list, feed_dict, options, run_metadata)
   1030     if handle is None:
   1031       return self._do_call(_run_fn, self._session, feed_dict, fetch_list,
-> 1032                            target_list, options, run_metadata)
   1033     else:
   1034       return self._do_call(_prun_fn, self._session, handle, feed_dict,

/Users/ko/anaconda/lib/python3.6/site-packages/tensorflow/python/client/session.py in _do_call(self, fn, *args)
   1037   def _do_call(self, fn, *args):
   1038     try:
-> 1039       return fn(*args)
   1040     except errors.OpError as e:
   1041       message = compat.as_text(e.message)

/Users/ko/anaconda/lib/python3.6/site-packages/tensorflow/python/client/session.py in _run_fn(session, feed_dict, fetch_list, target_list, options, run_metadata)
   1019         return tf_session.TF_Run(session, options,
   1020                                  feed_dict, fetch_list, target_list,
-> 1021                                  status, run_metadata)
   1022 
   1023     def _prun_fn(session, handle, feed_dict, fetch_list):

KeyboardInterrupt: 

CelebA

Run your GANs on CelebA. It will take around 20 minutes on the average GPU to run one epoch. You can run the whole epoch or stop when it starts to generate realistic faces.


In [ ]:
batch_size = None
z_dim = None
learning_rate = None
beta1 = None


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
epochs = 1

celeba_dataset = helper.Dataset('celeba', glob(os.path.join(data_dir, 'img_align_celeba/*.jpg')))
with tf.Graph().as_default():
    train(epochs, batch_size, z_dim, learning_rate, beta1, celeba_dataset.get_batches,
          celeba_dataset.shape, celeba_dataset.image_mode)

Submitting This Project

When submitting this project, make sure to run all the cells before saving the notebook. Save the notebook file as "dlnd_face_generation.ipynb" and save it as a HTML file under "File" -> "Download as". Include the "helper.py" and "problem_unittests.py" files in your submission.