In [100]:
from sklearn import linear_model
import numpy as np
from matplotlib import pyplot as plt
%matplotlib inline
In [22]:
data = np.genfromtxt('/Users/surbhisingla/Desktop/berg1/recs2009_public.csv',delimiter=",",names=True)
In [23]:
data.shape
Out[23]:
In [85]:
data1=data[data['Climate_Region_Pub']==1]
age_data=2015-data1['YEARMADE']
EUI_data=data1['TOTALBTU']/data1['TOTSQFT'] #Energy usage Intensity
ElecUI_data= data1['KWH']/data1['TOTSQFT'] #Electricity usage Intensity
age_data.shape
Out[85]:
In [86]:
plt.figure(figsize=(15,8))
plt.plot(age_data,EUI_data,'.')
Out[86]:
In [87]:
# fitting a 2nd order polynomial
po = np.polyfit(age_data,EUI_data, 2)
xpo = np.linspace(0,95,num=95)
plt.figure(figsize=(15,8))
plt.plot(age_data,EUI_data,'.', xp, np.polyval(po,xpo),'-r')
plt.xlabel('Age of the building (years)')
plt.ylabel('Energy usage Intensity(BTU/sqft)')
plt.title('Energy Usage Intensity vs Age of building')
plt.legend(('RECS data','2nd Order Polynomial'))
Out[87]:
In [118]:
from sklearn import linear_model
Y=data['TOTALBTU']
x = np.vstack((data1['TEMPHOME'],data1['TEMPGONE'],data1['TEMPNITE'],data1['ACROOMS'],data1['WINDOWS'],data1['NHSLDMEM'],data1['TOTSQFT'],age_data,data1['STORIES'],data1['MONEYPY'],data1['HEATROOM'],data1['EQUIPAGE'],data1['NUMH2ONOTNK'],data1['NUMH2OHTRS'],data1['LGT4'])).T
clf = linear_model.Lasso(alpha=45000)
clf.fit(x,Y)
# Lasso(alpha=0.1, copy_X=True, fit_intercept=True, max_iter=1000,
# normalize=False, positive=False, precompute=False, random_state=None,
# selection='cyclic', tol=0.0001, warm_start=False)
print(clf.coef_)
print(clf.intercept_)
In [119]:
data2 = np.genfromtxt('/Users/surbhisingla/Downloads/RECS05alldata.csv',delimiter=",",names=True)
In [127]:
data2['YEARMADE'][2,]
Out[127]:
In [144]:
#Climate region normailzation
data3=data2[data2['HD65']>4000]
data4=data3[data3['HD65']<13000]
data5=data4[data4['CD65']<1600]
age=np.zeros((len(data5),))
for i in range(len(data5)):
if (data5['YEARMADE'][i,]==1):
age[i,]= 75
elif (data5['YEARMADE'][i,]==2):
age[i,]= 70
elif (data5['YEARMADE'][i,]==3):
age[i,]= 60
elif (data5['YEARMADE'][i,]==4):
age[i,]= 50
elif (data5['YEARMADE'][i,]==5):
age[i,]= 40
elif (data5['YEARMADE'][i,]==6):
age[i,]= 33
elif (data5['YEARMADE'][i,]==7):
age[i,]= 28
elif (data5['YEARMADE'][i,]==8):
age[i,]= 23
elif (data5['YEARMADE'][i,]==9):
age[i,]= 18
elif (data5['YEARMADE'][i,]==10):
age[i,]= 14
elif (data5['YEARMADE'][i,]==11):
age[i,]= 12
elif (data5['YEARMADE'][i,]==12):
age[i,]= 11
else:
age[i,]= 10
# age_data=2015-data1['YEARMADE']
# EUI_data=data1['TOTALBTU']/data1['TOTSQFT'] #Energy usage Intensity
# ElecUI_data= data1['KWH']/data1['TOTSQFT'] #Electricity usage Intensity
# age_data.shape
data5.shape
Out[144]:
In [145]:
age
Out[145]:
In [151]:
EUI=data5['BTUEL']/data5['TOTSQFT']
In [153]:
plt.figure(figsize=(15,8))
plt.plot(age,EUI,'.', age, np.polyval(po,age),'-r')
plt.xlabel('Age of the building (years)')
plt.ylabel('Energy usage Intensity(BTU/sqft)')
plt.title('Energy Usage Intensity vs Age of building')
plt.legend(('RECS data','2nd Order Polynomial'))
Out[153]:
In [ ]: