In [1]:
import networkx as nx
number_of_nodes = 10
G = nx.complete_graph(number_of_nodes)
In [2]:
import random
from nxsim import BaseNetworkAgent
class ZombieOutbreak(BaseNetworkAgent):
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.bite_prob = 0.05
def run(self):
while True:
if self.state['id'] == 1:
self.zombify()
yield self.env.timeout(1)
else:
yield self.env.event()
def zombify(self):
normal_neighbors = self.get_neighboring_agents(state_id=0)
for neighbor in normal_neighbors:
if random.random() < self.bite_prob:
neighbor.state['id'] = 1 # zombie
print(self.env.now, self.id, neighbor.id, sep='\t')
break
In [3]:
from nxsim import NetworkSimulation
# Initialize agent states. Let's assume everyone is normal.
init_states = [{'id': 0, } for _ in range(number_of_nodes)] # add keys as as necessary, but "id" must always refer to that state category
# Seed a zombie
init_states[5] = {'id': 1}
sim = NetworkSimulation(topology=G, states=init_states, agent_type=ZombieOutbreak,
max_time=30, num_trials=1, logging_interval=1.0)
In [4]:
sim.run_simulation()
In [5]:
%matplotlib inline
nx.draw(G)
In [6]:
from nxsim import BaseLoggingAgent
trial = BaseLoggingAgent.open_trial_state_history(dir_path='sim_01', trial_id=0)
In [7]:
import numpy as np
from matplotlib import pyplot as plt
%matplotlib inline
zombie_census = [sum([1 for node_id, state in g.items() if state['id'] == 1]) for t,g in trial.items()]
plt.plot(zombie_census)
Out[7]:
In [7]: