In [84]:
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
In [5]:
DATA = '../data/'
In [8]:
from scipy.misc import imsave, fromimage, toimage
from PIL import Image, ImageOps
WIDTH = HEIGHT = 224
def load_and_crop_image(filename, target_size):
return ImageOps.fit(Image.open(filename), target_size)
In [15]:
gatos = np.array([fromimage(load_and_crop_image(DATA+'/gatos/cat.{:04}.jpg'.format(i), (WIDTH, HEIGHT))) for i in range(100)])
perros = np.array([fromimage(load_and_crop_image(DATA+'/gatos/dog.{:04}.jpg'.format(i), (WIDTH, HEIGHT))) for i in range(100)])
imágenes = np.concatenate((gatos, perros), axis=0)
labels = np.zeros(len(gatos) + len(perros), dtype=int)
labels[:len(gatos)] = 1
In [141]:
toimage(imágenes[0])
Out[141]:
In [13]:
características = np.load(DATA+'/feats/all_feats.npy')
indices1 = np.load(DATA+'/feats/indices1.npy')
indices2 = np.load(DATA+'/feats/indices2.npy')
In [ ]:
imágenes1 = imágenes[indices1]
car1 = características[indices1]
imágenes2 = imágenes[indices2]
car2 = características[indices2]
In [122]:
len(imágenes1)
Out[122]:
In [123]:
toimage(imágenes1[0])
Out[123]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [69]:
%run vgg16.py
In [77]:
all_cats
Out[77]:
In [145]:
preds[all_cats].sum()
Out[145]:
In [153]:
preds = model.predict(img_to_vgg_input(imágenes1[5]))[0]
In [152]:
[synsets[idx] for idx in np.argsort(preds)[::-1][:5]]
Out[152]:
In [ ]: