In [5]:
import pandas as pd

In [6]:
df = pd.read_excel("Billionaire Characteristics Database/Billionaires1996,2001and2014updated.xlsx")

In [7]:
df.head()


Out[7]:
year name rank citizenship countrycode networthusbillion selfmade typeofwealth gender age ... relationshiptocompany foundingdate gdpcurrentus sourceofwealth notes notes2 source source_2 source_3 source_4
0 2001 A Jerrold Perenchio 151 United States USA 3.0 self-made executive male 70.0 ... former chairman and CEO 1955.0 1.062180e+13 NaN represented Marlon Brando and Elizabeth Taylor NaN http://en.wikipedia.org/wiki/Jerry_Perenchio http://www.forbes.com/profile/a-jerrold-perenc... COLUMN ONE; A Hollywood Player Who Owns the Ga... NaN
1 2014 A. Jerrold Perenchio 663 United States USA 2.6 self-made executive male 83.0 ... former chairman and CEO 1955.0 NaN television, Univision represented Marlon Brando and Elizabeth Taylor NaN http://en.wikipedia.org/wiki/Jerry_Perenchio http://www.forbes.com/profile/a-jerrold-perenc... COLUMN ONE; A Hollywood Player Who Owns the Ga... NaN
2 2001 Abdul Al Rahman Al Jeraisy 336 Saudi Arabia SAU 1.5 self-made founder non-finance male NaN ... founder 1956.0 1.830120e+11 NaN NaN NaN http://www.jeraisy.com.sa/index.php/pages/rend... NaN NaN NaN
3 2001 Abdul Aziz Al Ghurair 251 United Arab Emirates ARE 1.9 inherited inherited male 47.0 ... relation 1960.0 1.030000e+11 NaN inherited from father NaN NaN NaN NaN NaN
4 1996 Abdul Aziz Al-Sulaiman 404 Saudi Arabia SAU 1.0 self-made self-made finance male 0.0 ... founder 1968.0 1.577430e+11 NaN NaN NaN http://www.arabianbusiness.com/arabian-busines... NaN NaN NaN

5 rows × 30 columns


In [8]:
%matplotlib inline

In [10]:
df['age'].hist()


Out[10]:
<matplotlib.axes._subplots.AxesSubplot at 0x2c2eed0>

In [11]:
import matplotlib.pyplot as plt

In [12]:
plt.style.available


Out[12]:
['grayscale',
 'seaborn-colorblind',
 'seaborn-dark',
 'seaborn-dark-palette',
 'seaborn-notebook',
 'classic',
 'seaborn-darkgrid',
 'bmh',
 'seaborn-poster',
 'seaborn-pastel',
 'dark_background',
 'ggplot',
 'seaborn-paper',
 'seaborn-ticks',
 'seaborn-muted',
 'seaborn-whitegrid',
 'seaborn-talk',
 'seaborn-bright',
 'seaborn-deep',
 'seaborn-white',
 'fivethirtyeight']

In [13]:
plt.style.use("bmh")

In [14]:
df['networthusbillion'].hist()


Out[14]:
<matplotlib.axes._subplots.AxesSubplot at 0x61e2850>

In [ ]: