Image Classification

In this project, you'll classify images from the CIFAR-10 dataset. The dataset consists of airplanes, dogs, cats, and other objects. You'll preprocess the images, then train a convolutional neural network on all the samples. The images need to be normalized and the labels need to be one-hot encoded. You'll get to apply what you learned and build a convolutional, max pooling, dropout, and fully connected layers. At the end, you'll get to see your neural network's predictions on the sample images.

Get the Data

Run the following cell to download the CIFAR-10 dataset for python.


In [1]:
"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
from urllib.request import urlretrieve
from os.path import isfile, isdir
from tqdm import tqdm
import problem_unittests as tests
import tarfile

cifar10_dataset_folder_path = 'cifar-10-batches-py'

class DLProgress(tqdm):
    last_block = 0

    def hook(self, block_num=1, block_size=1, total_size=None):
        self.total = total_size
        self.update((block_num - self.last_block) * block_size)
        self.last_block = block_num

if not isfile('cifar-10-python.tar.gz'):
    with DLProgress(unit='B', unit_scale=True, miniters=1, desc='CIFAR-10 Dataset') as pbar:
        urlretrieve(
            'https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz',
            'cifar-10-python.tar.gz',
            pbar.hook)

if not isdir(cifar10_dataset_folder_path):
    with tarfile.open('cifar-10-python.tar.gz') as tar:
        tar.extractall()
        tar.close()


tests.test_folder_path(cifar10_dataset_folder_path)


CIFAR-10 Dataset: 171MB [00:22, 7.65MB/s]                              
All files found!

Explore the Data

The dataset is broken into batches to prevent your machine from running out of memory. The CIFAR-10 dataset consists of 5 batches, named data_batch_1, data_batch_2, etc.. Each batch contains the labels and images that are one of the following:

  • airplane
  • automobile
  • bird
  • cat
  • deer
  • dog
  • frog
  • horse
  • ship
  • truck

Understanding a dataset is part of making predictions on the data. Play around with the code cell below by changing the batch_id and sample_id. The batch_id is the id for a batch (1-5). The sample_id is the id for a image and label pair in the batch.

Ask yourself "What are all possible labels?", "What is the range of values for the image data?", "Are the labels in order or random?". Answers to questions like these will help you preprocess the data and end up with better predictions.


In [2]:
%matplotlib inline
%config InlineBackend.figure_format = 'retina'

import helper
import numpy as np

# Explore the dataset
batch_id = 1
sample_id = 5
helper.display_stats(cifar10_dataset_folder_path, batch_id, sample_id)


Stats of batch 1:
Samples: 10000
Label Counts: {0: 1005, 1: 974, 2: 1032, 3: 1016, 4: 999, 5: 937, 6: 1030, 7: 1001, 8: 1025, 9: 981}
First 20 Labels: [6, 9, 9, 4, 1, 1, 2, 7, 8, 3, 4, 7, 7, 2, 9, 9, 9, 3, 2, 6]

Example of Image 5:
Image - Min Value: 0 Max Value: 252
Image - Shape: (32, 32, 3)
Label - Label Id: 1 Name: automobile

Implement Preprocess Functions

Normalize

In the cell below, implement the normalize function to take in image data, x, and return it as a normalized Numpy array. The values should be in the range of 0 to 1, inclusive. The return object should be the same shape as x.


In [3]:
def normalize(x):
    """
    Normalize a list of sample image data in the range of 0 to 1
    : x: List of image data.  The image shape is (32, 32, 3)
    : return: Numpy array of normalize data
    """
    # TODO: Implement Function
    normed_array = np.array(x / np.linalg.norm(x))
    return normed_array


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_normalize(normalize)


Tests Passed

One-hot encode

Just like the previous code cell, you'll be implementing a function for preprocessing. This time, you'll implement the one_hot_encode function. The input, x, are a list of labels. Implement the function to return the list of labels as One-Hot encoded Numpy array. The possible values for labels are 0 to 9. The one-hot encoding function should return the same encoding for each value between each call to one_hot_encode. Make sure to save the map of encodings outside the function.

Hint: Don't reinvent the wheel.


In [4]:
from sklearn import preprocessing

lb = preprocessing.LabelBinarizer()
lb.fit(range(0, 10))
#print(lb.classes_)

def one_hot_encode(x):
    """
    One hot encode a list of sample labels. Return a one-hot encoded vector for each label.
    : x: List of sample Labels
    : return: Numpy array of one-hot encoded labels
    """
    # TODO: Implement Function
    #print(x)
    encoded_array = np.array(lb.transform(x))
    #print(encoded_array)
    return encoded_array


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_one_hot_encode(one_hot_encode)


Tests Passed

Randomize Data

As you saw from exploring the data above, the order of the samples are randomized. It doesn't hurt to randomize it again, but you don't need to for this dataset.

Preprocess all the data and save it

Running the code cell below will preprocess all the CIFAR-10 data and save it to file. The code below also uses 10% of the training data for validation.


In [5]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
# Preprocess Training, Validation, and Testing Data
helper.preprocess_and_save_data(cifar10_dataset_folder_path, normalize, one_hot_encode)

Check Point

This is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk.


In [1]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
import pickle
import problem_unittests as tests
import helper

# Load the Preprocessed Validation data
valid_features, valid_labels = pickle.load(open('preprocess_validation.p', mode='rb'))

Build the network

For the neural network, you'll build each layer into a function. Most of the code you've seen has been outside of functions. To test your code more thoroughly, we require that you put each layer in a function. This allows us to give you better feedback and test for simple mistakes using our unittests before you submit your project.

Note: If you're finding it hard to dedicate enough time for this course each week, we've provided a small shortcut to this part of the project. In the next couple of problems, you'll have the option to use classes from the TensorFlow Layers or TensorFlow Layers (contrib) packages to build each layer, except the layers you build in the "Convolutional and Max Pooling Layer" section. TF Layers is similar to Keras's and TFLearn's abstraction to layers, so it's easy to pickup.

However, if you would like to get the most out of this course, try to solve all the problems without using anything from the TF Layers packages. You can still use classes from other packages that happen to have the same name as ones you find in TF Layers! For example, instead of using the TF Layers version of the conv2d class, tf.layers.conv2d, you would want to use the TF Neural Network version of conv2d, tf.nn.conv2d.

Let's begin!

Input

The neural network needs to read the image data, one-hot encoded labels, and dropout keep probability. Implement the following functions

  • Implement neural_net_image_input
    • Return a TF Placeholder
    • Set the shape using image_shape with batch size set to None.
    • Name the TensorFlow placeholder "x" using the TensorFlow name parameter in the TF Placeholder.
  • Implement neural_net_label_input
    • Return a TF Placeholder
    • Set the shape using n_classes with batch size set to None.
    • Name the TensorFlow placeholder "y" using the TensorFlow name parameter in the TF Placeholder.
  • Implement neural_net_keep_prob_input
    • Return a TF Placeholder for dropout keep probability.
    • Name the TensorFlow placeholder "keep_prob" using the TensorFlow name parameter in the TF Placeholder.

These names will be used at the end of the project to load your saved model.

Note: None for shapes in TensorFlow allow for a dynamic size.


In [2]:
import tensorflow as tf

def neural_net_image_input(image_shape):
    """
    Return a Tensor for a bach of image input
    : image_shape: Shape of the images
    : return: Tensor for image input.
    """
    # TODO: Implement Function
    #print(image_shape)
    image_input = tf.placeholder(tf.float32, [None, *image_shape], name="x")
    return image_input


def neural_net_label_input(n_classes):
    """
    Return a Tensor for a batch of label input
    : n_classes: Number of classes
    : return: Tensor for label input.
    """
    # TODO: Implement Function
    #print(n_classes)
    label_input = tf.placeholder(tf.float32, [None, n_classes], name="y")
    return label_input


def neural_net_keep_prob_input():
    """
    Return a Tensor for keep probability
    : return: Tensor for keep probability.
    """
    # TODO: Implement Function
    keep_prob_input = tf.placeholder(tf.float32, name="keep_prob")
    return keep_prob_input


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tf.reset_default_graph()
tests.test_nn_image_inputs(neural_net_image_input)
tests.test_nn_label_inputs(neural_net_label_input)
tests.test_nn_keep_prob_inputs(neural_net_keep_prob_input)


Image Input Tests Passed.
Label Input Tests Passed.
Keep Prob Tests Passed.

Convolution and Max Pooling Layer

Convolution layers have a lot of success with images. For this code cell, you should implement the function conv2d_maxpool to apply convolution then max pooling:

  • Create the weight and bias using conv_ksize, conv_num_outputs and the shape of x_tensor.
  • Apply a convolution to x_tensor using weight and conv_strides.
    • We recommend you use same padding, but you're welcome to use any padding.
  • Add bias
  • Add a nonlinear activation to the convolution.
  • Apply Max Pooling using pool_ksize and pool_strides.
    • We recommend you use same padding, but you're welcome to use any padding.

Note: You can't use TensorFlow Layers or TensorFlow Layers (contrib) for this layer, but you can still use TensorFlow's Neural Network package. You may still use the shortcut option for all the other layers.


In [3]:
def conv2d_maxpool(x_tensor, conv_num_outputs, conv_ksize, conv_strides, pool_ksize, pool_strides):
    """
    Apply convolution then max pooling to x_tensor
    :param x_tensor: TensorFlow Tensor
    :param conv_num_outputs: Number of outputs for the convolutional layer
    :param conv_ksize: kernal size 2-D Tuple for the convolutional layer
    :param conv_strides: Stride 2-D Tuple for convolution
    :param pool_ksize: kernal size 2-D Tuple for pool
    :param pool_strides: Stride 2-D Tuple for pool
    : return: A tensor that represents convolution and max pooling of x_tensor
    """
    # TODO: Implement Function

    # Filter (weights and bias)
    # The shape of the filter weight is (height, width, input_depth, output_depth)
    # The shape of the filter bias is (output_depth,)
    
    #print(x_tensor)
    #print(type(x_tensor.shape))
    #print(x_tensor.shape.as_list()[1:4])
    #print(conv_num_outputs, conv_ksize, conv_strides, pool_ksize, pool_strides)
    
    weight = tf.Variable(tf.truncated_normal([*conv_ksize, x_tensor.shape.as_list()[-1], conv_num_outputs], mean=0, stddev=0.1))
    bias = tf.Variable(tf.zeros([conv_num_outputs]))    
    
    conv_layer = tf.nn.conv2d(x_tensor, weight, strides=[1, *conv_strides, 1], padding='SAME')
    conv_layer = tf.nn.bias_add(conv_layer, bias)
    #conv_layer = tf.nn.relu(conv_layer)  #having this here was making the result horrible...
    
    # Apply Max Pooling
    conv_layer = tf.nn.max_pool(conv_layer, ksize=[1, *pool_ksize, 1], strides=[1, *pool_strides, 1], padding='SAME')
    
    return conv_layer 


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_con_pool(conv2d_maxpool)


Tests Passed

Flatten Layer

Implement the flatten function to change the dimension of x_tensor from a 4-D tensor to a 2-D tensor. The output should be the shape (Batch Size, Flattened Image Size). Shortcut option: you can use classes from the TensorFlow Layers or TensorFlow Layers (contrib) packages for this layer. For more of a challenge, only use other TensorFlow packages.


In [4]:
import numpy as np

def flatten(x_tensor):
    """
    Flatten x_tensor to (Batch Size, Flattened Image Size)
    : x_tensor: A tensor of size (Batch Size, ...), where ... are the image dimensions.
    : return: A tensor of size (Batch Size, Flattened Image Size).
    """
    # TODO: Implement Function
    #print(x_tensor)
    #print(x_tensor.shape.as_list()[1:4])
    
    shape = x_tensor.shape.as_list()
    dim = np.prod(shape[1:])
    flattened_tensor = tf.reshape(x_tensor, [-1, dim])           # -1 means "all"
    return flattened_tensor


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_flatten(flatten)


Tests Passed

Fully-Connected Layer

Implement the fully_conn function to apply a fully connected layer to x_tensor with the shape (Batch Size, num_outputs). Shortcut option: you can use classes from the TensorFlow Layers or TensorFlow Layers (contrib) packages for this layer. For more of a challenge, only use other TensorFlow packages.


In [5]:
def fully_conn(x_tensor, num_outputs):
    """
    Apply a fully connected layer to x_tensor using weight and bias
    : x_tensor: A 2-D tensor where the first dimension is batch size.
    : num_outputs: The number of output that the new tensor should be.
    : return: A 2-D tensor where the second dimension is num_outputs.
    """
    # TODO: Implement Function
    #print(x_tensor.shape[1])
    #print(num_outputs)
    
    # Fully connected layer
    weight = tf.Variable(tf.truncated_normal([x_tensor.shape.as_list()[1], num_outputs], mean=0, stddev=0.1))
    bias = tf.Variable(tf.zeros([num_outputs]))    
    fully_conn_layer = tf.add(tf.matmul(x_tensor, weight), bias)
    fully_conn_layer = tf.nn.relu(fully_conn_layer)
    
    return fully_conn_layer


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_fully_conn(fully_conn)


Tests Passed

Output Layer

Implement the output function to apply a fully connected layer to x_tensor with the shape (Batch Size, num_outputs). Shortcut option: you can use classes from the TensorFlow Layers or TensorFlow Layers (contrib) packages for this layer. For more of a challenge, only use other TensorFlow packages.

Note: Activation, softmax, or cross entropy should not be applied to this.


In [6]:
def output(x_tensor, num_outputs):
    """
    Apply a output layer to x_tensor using weight and bias
    : x_tensor: A 2-D tensor where the first dimension is batch size.
    : num_outputs: The number of output that the new tensor should be.
    : return: A 2-D tensor where the second dimension is num_outputs.
    """
    # TODO: Implement Function
    #print(x_tensor)
    #print(num_outputs)
 
    weight = tf.Variable(tf.truncated_normal([x_tensor.shape.as_list()[1], num_outputs], mean=0, stddev=0.1))
    bias = tf.Variable(tf.zeros([num_outputs]))    
    
    output_layer = tf.add(tf.matmul(x_tensor, weight), bias)

    return output_layer


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_output(output)


Tests Passed

Create Convolutional Model

Implement the function conv_net to create a convolutional neural network model. The function takes in a batch of images, x, and outputs logits. Use the layers you created above to create this model:

  • Apply 1, 2, or 3 Convolution and Max Pool layers
  • Apply a Flatten Layer
  • Apply 1, 2, or 3 Fully Connected Layers
  • Apply an Output Layer
  • Return the output
  • Apply TensorFlow's Dropout to one or more layers in the model using keep_prob.

In [7]:
def conv_net(x, keep_prob):
    """
    Create a convolutional neural network model
    : x: Placeholder tensor that holds image data.
    : keep_prob: Placeholder tensor that hold dropout keep probability.
    : return: Tensor that represents logits
    """
    pool_ksize = (2, 2)     #fixed
    pool_strides = (2, 2)  #fixed
    
    # TODO: Apply 1, 2, or 3 Convolution and Max Pool layers
    #    Play around with different number of outputs, kernel size and stride
    # Function Definition from Above:
    
    print(x.shape)

    conv_num_outputs = 32
    conv_ksize = (5, 5)
    conv_strides = (1, 1)
    conv2d_maxpool_layer1 = conv2d_maxpool(x, conv_num_outputs, conv_ksize, conv_strides, pool_ksize, pool_strides)
    print(conv2d_maxpool_layer1.shape)

    conv_num_outputs = 128
    conv_ksize = (5, 5)
    conv_strides = (1, 1)    
    conv2d_maxpool_layer2 = conv2d_maxpool(conv2d_maxpool_layer1, conv_num_outputs, conv_ksize, conv_strides, pool_ksize, pool_strides)
    print(conv2d_maxpool_layer2.shape)
    
    # TODO: Apply a Flatten Layer
    # Function Definition from Above:
    flattened_layer = flatten(conv2d_maxpool_layer2)
    print(flattened_layer.shape)
    

    # TODO: Apply 1, 2, or 3 Fully Connected Layers
    #    Play around with different number of outputs
    # Function Definition from Above:
    num_outputs = 1024
    fully_conn_layer = fully_conn(flattened_layer, num_outputs)
    fully_conn_layer = tf.nn.dropout(fully_conn_layer, keep_prob)
    print(fully_conn_layer.shape)

    # TODO: Apply an Output Layer
    #    Set this to the number of classes
    # Function Definition from Above:
    output_layer = output(fully_conn_layer, 10)
    print(output_layer.shape)
    
    
    # TODO: return output
    return output_layer



"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""

##############################
## Build the Neural Network ##
##############################

# Remove previous weights, bias, inputs, etc..
tf.reset_default_graph()

# Inputs
x = neural_net_image_input((32, 32, 3))
y = neural_net_label_input(10)
keep_prob = neural_net_keep_prob_input()

# Model
logits = conv_net(x, keep_prob)

# Name logits Tensor, so that is can be loaded from disk after training
logits = tf.identity(logits, name='logits')

# Loss and Optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y))
optimizer = tf.train.AdamOptimizer().minimize(cost)

# Accuracy
correct_pred = tf.equal(tf.argmax(logits, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32), name='accuracy')

tests.test_conv_net(conv_net)


(?, 32, 32, 3)
(?, 16, 16, 32)
(?, 8, 8, 128)
(?, 8192)
(?, 1024)
(?, 10)
(?, 32, 32, 3)
(?, 16, 16, 32)
(?, 8, 8, 128)
(?, 8192)
(?, 1024)
(?, 10)
Neural Network Built!

Train the Neural Network

Single Optimization

Implement the function train_neural_network to do a single optimization. The optimization should use optimizer to optimize in session with a feed_dict of the following:

  • x for image input
  • y for labels
  • keep_prob for keep probability for dropout

This function will be called for each batch, so tf.global_variables_initializer() has already been called.

Note: Nothing needs to be returned. This function is only optimizing the neural network.


In [8]:
def train_neural_network(session, optimizer, keep_probability, feature_batch, label_batch):
    """
    Optimize the session on a batch of images and labels
    : session: Current TensorFlow session
    : optimizer: TensorFlow optimizer function
    : keep_probability: keep probability
    : feature_batch: Batch of Numpy image data
    : label_batch: Batch of Numpy label data
    """
    # TODO: Implement Function
    session.run(optimizer, feed_dict={
        x: feature_batch,
        y: label_batch,
        keep_prob: keep_probability})


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_train_nn(train_neural_network)


Tests Passed

Show Stats

Implement the function print_stats to print loss and validation accuracy. Use the global variables valid_features and valid_labels to calculate validation accuracy. Use a keep probability of 1.0 to calculate the loss and validation accuracy.


In [9]:
def print_stats(session, feature_batch, label_batch, cost, accuracy):
    """
    Print information about loss and validation accuracy
    : session: Current TensorFlow session
    : feature_batch: Batch of Numpy image data
    : label_batch: Batch of Numpy label data
    : cost: TensorFlow cost function
    : accuracy: TensorFlow accuracy function
    """
    # TODO: Implement Function
    #print(valid_features, valid_labels)
    #print("print stats", cost, accuracy)
    
    loss = session.run(cost, feed_dict = {x: feature_batch, y: label_batch, keep_prob: 1.0}) 
    acc = session.run(accuracy,feed_dict = {x: valid_features, y: valid_labels, keep_prob: 1.0})
    
    print('Loss: {:>10.4f} Validation Accuracy: {:.6f}'.format(loss, acc))

Hyperparameters

Tune the following parameters:

  • Set epochs to the number of iterations until the network stops learning or start overfitting
  • Set batch_size to the highest number that your machine has memory for. Most people set them to common sizes of memory:
    • 64
    • 128
    • 256
    • ...
  • Set keep_probability to the probability of keeping a node using dropout

In [12]:
# TODO: Tune Parameters
epochs = 64
batch_size = 256
keep_probability = 0.6

Train on a Single CIFAR-10 Batch

Instead of training the neural network on all the CIFAR-10 batches of data, let's use a single batch. This should save time while you iterate on the model to get a better accuracy. Once the final validation accuracy is 50% or greater, run the model on all the data in the next section.


In [13]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
print('Checking the Training on a Single Batch...')
with tf.Session() as sess:
    # Initializing the variables
    sess.run(tf.global_variables_initializer())
    
    # Training cycle
    for epoch in range(epochs):
        batch_i = 1
        for batch_features, batch_labels in helper.load_preprocess_training_batch(batch_i, batch_size):
            train_neural_network(sess, optimizer, keep_probability, batch_features, batch_labels)
        print('Epoch {:>2}, CIFAR-10 Batch {}:  '.format(epoch + 1, batch_i), end='')
        print_stats(sess, batch_features, batch_labels, cost, accuracy)


Checking the Training on a Single Batch...
Epoch  1, CIFAR-10 Batch 1:  Loss:     2.2770 Validation Accuracy: 0.111800
Epoch  2, CIFAR-10 Batch 1:  Loss:     2.2307 Validation Accuracy: 0.143800
Epoch  3, CIFAR-10 Batch 1:  Loss:     2.1663 Validation Accuracy: 0.196200
Epoch  4, CIFAR-10 Batch 1:  Loss:     2.0351 Validation Accuracy: 0.263600
Epoch  5, CIFAR-10 Batch 1:  Loss:     1.8881 Validation Accuracy: 0.278200
Epoch  6, CIFAR-10 Batch 1:  Loss:     1.7605 Validation Accuracy: 0.348200
Epoch  7, CIFAR-10 Batch 1:  Loss:     1.6510 Validation Accuracy: 0.311000
Epoch  8, CIFAR-10 Batch 1:  Loss:     1.5764 Validation Accuracy: 0.356400
Epoch  9, CIFAR-10 Batch 1:  Loss:     1.3890 Validation Accuracy: 0.375000
Epoch 10, CIFAR-10 Batch 1:  Loss:     1.2993 Validation Accuracy: 0.381400
Epoch 11, CIFAR-10 Batch 1:  Loss:     1.1769 Validation Accuracy: 0.404600
Epoch 12, CIFAR-10 Batch 1:  Loss:     1.1485 Validation Accuracy: 0.424400
Epoch 13, CIFAR-10 Batch 1:  Loss:     1.0261 Validation Accuracy: 0.427600
Epoch 14, CIFAR-10 Batch 1:  Loss:     0.9054 Validation Accuracy: 0.409600
Epoch 15, CIFAR-10 Batch 1:  Loss:     0.8012 Validation Accuracy: 0.415200
Epoch 16, CIFAR-10 Batch 1:  Loss:     0.7519 Validation Accuracy: 0.440800
Epoch 17, CIFAR-10 Batch 1:  Loss:     0.6836 Validation Accuracy: 0.416200
Epoch 18, CIFAR-10 Batch 1:  Loss:     0.5975 Validation Accuracy: 0.433800
Epoch 19, CIFAR-10 Batch 1:  Loss:     0.5531 Validation Accuracy: 0.420400
Epoch 20, CIFAR-10 Batch 1:  Loss:     0.5149 Validation Accuracy: 0.447800
Epoch 21, CIFAR-10 Batch 1:  Loss:     0.5256 Validation Accuracy: 0.427600
Epoch 22, CIFAR-10 Batch 1:  Loss:     0.4395 Validation Accuracy: 0.459200
Epoch 23, CIFAR-10 Batch 1:  Loss:     0.3699 Validation Accuracy: 0.463800
Epoch 24, CIFAR-10 Batch 1:  Loss:     0.3268 Validation Accuracy: 0.476600
Epoch 25, CIFAR-10 Batch 1:  Loss:     0.3239 Validation Accuracy: 0.460600
Epoch 26, CIFAR-10 Batch 1:  Loss:     0.2763 Validation Accuracy: 0.474200
Epoch 27, CIFAR-10 Batch 1:  Loss:     0.2442 Validation Accuracy: 0.491000
Epoch 28, CIFAR-10 Batch 1:  Loss:     0.2204 Validation Accuracy: 0.491400
Epoch 29, CIFAR-10 Batch 1:  Loss:     0.2146 Validation Accuracy: 0.488000
Epoch 30, CIFAR-10 Batch 1:  Loss:     0.1844 Validation Accuracy: 0.489200
Epoch 31, CIFAR-10 Batch 1:  Loss:     0.1753 Validation Accuracy: 0.478800
Epoch 32, CIFAR-10 Batch 1:  Loss:     0.1275 Validation Accuracy: 0.491000
Epoch 33, CIFAR-10 Batch 1:  Loss:     0.1167 Validation Accuracy: 0.483600
Epoch 34, CIFAR-10 Batch 1:  Loss:     0.1175 Validation Accuracy: 0.475400
Epoch 35, CIFAR-10 Batch 1:  Loss:     0.0952 Validation Accuracy: 0.476000
Epoch 36, CIFAR-10 Batch 1:  Loss:     0.0985 Validation Accuracy: 0.472800
Epoch 37, CIFAR-10 Batch 1:  Loss:     0.1137 Validation Accuracy: 0.454800
Epoch 38, CIFAR-10 Batch 1:  Loss:     0.0828 Validation Accuracy: 0.463800
Epoch 39, CIFAR-10 Batch 1:  Loss:     0.0953 Validation Accuracy: 0.446200
Epoch 40, CIFAR-10 Batch 1:  Loss:     0.0568 Validation Accuracy: 0.485400
Epoch 41, CIFAR-10 Batch 1:  Loss:     0.0499 Validation Accuracy: 0.495600
Epoch 42, CIFAR-10 Batch 1:  Loss:     0.0511 Validation Accuracy: 0.484400
Epoch 43, CIFAR-10 Batch 1:  Loss:     0.0472 Validation Accuracy: 0.462200
Epoch 44, CIFAR-10 Batch 1:  Loss:     0.0378 Validation Accuracy: 0.488000
Epoch 45, CIFAR-10 Batch 1:  Loss:     0.0370 Validation Accuracy: 0.490800
Epoch 46, CIFAR-10 Batch 1:  Loss:     0.0360 Validation Accuracy: 0.479800
Epoch 47, CIFAR-10 Batch 1:  Loss:     0.0392 Validation Accuracy: 0.481000
Epoch 48, CIFAR-10 Batch 1:  Loss:     0.0389 Validation Accuracy: 0.466400
Epoch 49, CIFAR-10 Batch 1:  Loss:     0.0342 Validation Accuracy: 0.476800
Epoch 50, CIFAR-10 Batch 1:  Loss:     0.0526 Validation Accuracy: 0.461200
Epoch 51, CIFAR-10 Batch 1:  Loss:     0.0263 Validation Accuracy: 0.484000
Epoch 52, CIFAR-10 Batch 1:  Loss:     0.0163 Validation Accuracy: 0.487200
Epoch 53, CIFAR-10 Batch 1:  Loss:     0.0298 Validation Accuracy: 0.495200
Epoch 54, CIFAR-10 Batch 1:  Loss:     0.0195 Validation Accuracy: 0.483000
Epoch 55, CIFAR-10 Batch 1:  Loss:     0.0171 Validation Accuracy: 0.470000
Epoch 56, CIFAR-10 Batch 1:  Loss:     0.0152 Validation Accuracy: 0.482400
Epoch 57, CIFAR-10 Batch 1:  Loss:     0.0156 Validation Accuracy: 0.458400
Epoch 58, CIFAR-10 Batch 1:  Loss:     0.0122 Validation Accuracy: 0.477200
Epoch 59, CIFAR-10 Batch 1:  Loss:     0.0078 Validation Accuracy: 0.469400
Epoch 60, CIFAR-10 Batch 1:  Loss:     0.0097 Validation Accuracy: 0.463000
Epoch 61, CIFAR-10 Batch 1:  Loss:     0.0105 Validation Accuracy: 0.457800
Epoch 62, CIFAR-10 Batch 1:  Loss:     0.0127 Validation Accuracy: 0.458000
Epoch 63, CIFAR-10 Batch 1:  Loss:     0.0051 Validation Accuracy: 0.466000
Epoch 64, CIFAR-10 Batch 1:  Loss:     0.0068 Validation Accuracy: 0.466600

Fully Train the Model

Now that you got a good accuracy with a single CIFAR-10 batch, try it with all five batches.


In [14]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
save_model_path = './image_classification'

print('Training...')
with tf.Session() as sess:
    # Initializing the variables
    sess.run(tf.global_variables_initializer())
    
    # Training cycle
    for epoch in range(epochs):
        # Loop over all batches
        n_batches = 5
        for batch_i in range(1, n_batches + 1):
            for batch_features, batch_labels in helper.load_preprocess_training_batch(batch_i, batch_size):
                train_neural_network(sess, optimizer, keep_probability, batch_features, batch_labels)
            print('Epoch {:>2}, CIFAR-10 Batch {}:  '.format(epoch + 1, batch_i), end='')
            print_stats(sess, batch_features, batch_labels, cost, accuracy)
            
    # Save Model
    saver = tf.train.Saver()
    save_path = saver.save(sess, save_model_path)


Training...
Epoch  1, CIFAR-10 Batch 1:  Loss:     2.2710 Validation Accuracy: 0.145000
Epoch  1, CIFAR-10 Batch 2:  Loss:     2.1496 Validation Accuracy: 0.229200
Epoch  1, CIFAR-10 Batch 3:  Loss:     2.0174 Validation Accuracy: 0.236000
Epoch  1, CIFAR-10 Batch 4:  Loss:     1.7944 Validation Accuracy: 0.291000
Epoch  1, CIFAR-10 Batch 5:  Loss:     2.0584 Validation Accuracy: 0.259000
Epoch  2, CIFAR-10 Batch 1:  Loss:     1.9881 Validation Accuracy: 0.315800
Epoch  2, CIFAR-10 Batch 2:  Loss:     1.7667 Validation Accuracy: 0.339200
Epoch  2, CIFAR-10 Batch 3:  Loss:     1.6343 Validation Accuracy: 0.374400
Epoch  2, CIFAR-10 Batch 4:  Loss:     1.6045 Validation Accuracy: 0.402200
Epoch  2, CIFAR-10 Batch 5:  Loss:     1.9836 Validation Accuracy: 0.299000
Epoch  3, CIFAR-10 Batch 1:  Loss:     1.7819 Validation Accuracy: 0.375000
Epoch  3, CIFAR-10 Batch 2:  Loss:     1.5505 Validation Accuracy: 0.433200
Epoch  3, CIFAR-10 Batch 3:  Loss:     1.3832 Validation Accuracy: 0.408600
Epoch  3, CIFAR-10 Batch 4:  Loss:     1.3453 Validation Accuracy: 0.447800
Epoch  3, CIFAR-10 Batch 5:  Loss:     1.4655 Validation Accuracy: 0.416000
Epoch  4, CIFAR-10 Batch 1:  Loss:     1.5748 Validation Accuracy: 0.429600
Epoch  4, CIFAR-10 Batch 2:  Loss:     1.2824 Validation Accuracy: 0.469600
Epoch  4, CIFAR-10 Batch 3:  Loss:     1.2614 Validation Accuracy: 0.422600
Epoch  4, CIFAR-10 Batch 4:  Loss:     1.1915 Validation Accuracy: 0.491600
Epoch  4, CIFAR-10 Batch 5:  Loss:     1.2807 Validation Accuracy: 0.463800
Epoch  5, CIFAR-10 Batch 1:  Loss:     1.3486 Validation Accuracy: 0.462400
Epoch  5, CIFAR-10 Batch 2:  Loss:     1.1070 Validation Accuracy: 0.488000
Epoch  5, CIFAR-10 Batch 3:  Loss:     1.0642 Validation Accuracy: 0.455600
Epoch  5, CIFAR-10 Batch 4:  Loss:     1.0254 Validation Accuracy: 0.509400
Epoch  5, CIFAR-10 Batch 5:  Loss:     1.1546 Validation Accuracy: 0.491800
Epoch  6, CIFAR-10 Batch 1:  Loss:     1.1936 Validation Accuracy: 0.478400
Epoch  6, CIFAR-10 Batch 2:  Loss:     1.0111 Validation Accuracy: 0.500600
Epoch  6, CIFAR-10 Batch 3:  Loss:     0.8832 Validation Accuracy: 0.501400
Epoch  6, CIFAR-10 Batch 4:  Loss:     0.8880 Validation Accuracy: 0.526400
Epoch  6, CIFAR-10 Batch 5:  Loss:     1.0668 Validation Accuracy: 0.502200
Epoch  7, CIFAR-10 Batch 1:  Loss:     1.0471 Validation Accuracy: 0.508800
Epoch  7, CIFAR-10 Batch 2:  Loss:     0.8756 Validation Accuracy: 0.511000
Epoch  7, CIFAR-10 Batch 3:  Loss:     0.7883 Validation Accuracy: 0.520200
Epoch  7, CIFAR-10 Batch 4:  Loss:     0.7748 Validation Accuracy: 0.536000
Epoch  7, CIFAR-10 Batch 5:  Loss:     0.9470 Validation Accuracy: 0.496200
Epoch  8, CIFAR-10 Batch 1:  Loss:     0.8929 Validation Accuracy: 0.511000
Epoch  8, CIFAR-10 Batch 2:  Loss:     0.7682 Validation Accuracy: 0.518400
Epoch  8, CIFAR-10 Batch 3:  Loss:     0.6611 Validation Accuracy: 0.523800
Epoch  8, CIFAR-10 Batch 4:  Loss:     0.6575 Validation Accuracy: 0.561000
Epoch  8, CIFAR-10 Batch 5:  Loss:     0.8080 Validation Accuracy: 0.544000
Epoch  9, CIFAR-10 Batch 1:  Loss:     0.7927 Validation Accuracy: 0.526200
Epoch  9, CIFAR-10 Batch 2:  Loss:     0.6767 Validation Accuracy: 0.524000
Epoch  9, CIFAR-10 Batch 3:  Loss:     0.6026 Validation Accuracy: 0.523200
Epoch  9, CIFAR-10 Batch 4:  Loss:     0.5853 Validation Accuracy: 0.569200
Epoch  9, CIFAR-10 Batch 5:  Loss:     0.6757 Validation Accuracy: 0.558800
Epoch 10, CIFAR-10 Batch 1:  Loss:     0.6909 Validation Accuracy: 0.526400
Epoch 10, CIFAR-10 Batch 2:  Loss:     0.5465 Validation Accuracy: 0.528000
Epoch 10, CIFAR-10 Batch 3:  Loss:     0.5092 Validation Accuracy: 0.528800
Epoch 10, CIFAR-10 Batch 4:  Loss:     0.4886 Validation Accuracy: 0.567200
Epoch 10, CIFAR-10 Batch 5:  Loss:     0.6040 Validation Accuracy: 0.558200
Epoch 11, CIFAR-10 Batch 1:  Loss:     0.6289 Validation Accuracy: 0.542800
Epoch 11, CIFAR-10 Batch 2:  Loss:     0.4573 Validation Accuracy: 0.544000
Epoch 11, CIFAR-10 Batch 3:  Loss:     0.4353 Validation Accuracy: 0.546600
Epoch 11, CIFAR-10 Batch 4:  Loss:     0.4467 Validation Accuracy: 0.582600
Epoch 11, CIFAR-10 Batch 5:  Loss:     0.5234 Validation Accuracy: 0.556000
Epoch 12, CIFAR-10 Batch 1:  Loss:     0.4983 Validation Accuracy: 0.559800
Epoch 12, CIFAR-10 Batch 2:  Loss:     0.4072 Validation Accuracy: 0.534600
Epoch 12, CIFAR-10 Batch 3:  Loss:     0.3787 Validation Accuracy: 0.556200
Epoch 12, CIFAR-10 Batch 4:  Loss:     0.4019 Validation Accuracy: 0.554600
Epoch 12, CIFAR-10 Batch 5:  Loss:     0.4467 Validation Accuracy: 0.568600
Epoch 13, CIFAR-10 Batch 1:  Loss:     0.4180 Validation Accuracy: 0.556600
Epoch 13, CIFAR-10 Batch 2:  Loss:     0.3330 Validation Accuracy: 0.551600
Epoch 13, CIFAR-10 Batch 3:  Loss:     0.3485 Validation Accuracy: 0.562400
Epoch 13, CIFAR-10 Batch 4:  Loss:     0.3013 Validation Accuracy: 0.574800
Epoch 13, CIFAR-10 Batch 5:  Loss:     0.3463 Validation Accuracy: 0.589800
Epoch 14, CIFAR-10 Batch 1:  Loss:     0.3927 Validation Accuracy: 0.575800
Epoch 14, CIFAR-10 Batch 2:  Loss:     0.2803 Validation Accuracy: 0.574600
Epoch 14, CIFAR-10 Batch 3:  Loss:     0.2666 Validation Accuracy: 0.573400
Epoch 14, CIFAR-10 Batch 4:  Loss:     0.2590 Validation Accuracy: 0.588200
Epoch 14, CIFAR-10 Batch 5:  Loss:     0.2968 Validation Accuracy: 0.573600
Epoch 15, CIFAR-10 Batch 1:  Loss:     0.3087 Validation Accuracy: 0.570000
Epoch 15, CIFAR-10 Batch 2:  Loss:     0.2332 Validation Accuracy: 0.572400
Epoch 15, CIFAR-10 Batch 3:  Loss:     0.2362 Validation Accuracy: 0.583400
Epoch 15, CIFAR-10 Batch 4:  Loss:     0.2256 Validation Accuracy: 0.587400
Epoch 15, CIFAR-10 Batch 5:  Loss:     0.2711 Validation Accuracy: 0.602200
Epoch 16, CIFAR-10 Batch 1:  Loss:     0.2715 Validation Accuracy: 0.584400
Epoch 16, CIFAR-10 Batch 2:  Loss:     0.1925 Validation Accuracy: 0.551200
Epoch 16, CIFAR-10 Batch 3:  Loss:     0.2042 Validation Accuracy: 0.572200
Epoch 16, CIFAR-10 Batch 4:  Loss:     0.2090 Validation Accuracy: 0.591800
Epoch 16, CIFAR-10 Batch 5:  Loss:     0.2257 Validation Accuracy: 0.588200
Epoch 17, CIFAR-10 Batch 1:  Loss:     0.2167 Validation Accuracy: 0.557000
Epoch 17, CIFAR-10 Batch 2:  Loss:     0.1754 Validation Accuracy: 0.570400
Epoch 17, CIFAR-10 Batch 3:  Loss:     0.1960 Validation Accuracy: 0.560400
Epoch 17, CIFAR-10 Batch 4:  Loss:     0.1556 Validation Accuracy: 0.591600
Epoch 17, CIFAR-10 Batch 5:  Loss:     0.1713 Validation Accuracy: 0.585400
Epoch 18, CIFAR-10 Batch 1:  Loss:     0.1756 Validation Accuracy: 0.572000
Epoch 18, CIFAR-10 Batch 2:  Loss:     0.1405 Validation Accuracy: 0.585600
Epoch 18, CIFAR-10 Batch 3:  Loss:     0.1352 Validation Accuracy: 0.576400
Epoch 18, CIFAR-10 Batch 4:  Loss:     0.1234 Validation Accuracy: 0.591400
Epoch 18, CIFAR-10 Batch 5:  Loss:     0.1423 Validation Accuracy: 0.588600
Epoch 19, CIFAR-10 Batch 1:  Loss:     0.1609 Validation Accuracy: 0.585200
Epoch 19, CIFAR-10 Batch 2:  Loss:     0.1316 Validation Accuracy: 0.563800
Epoch 19, CIFAR-10 Batch 3:  Loss:     0.1607 Validation Accuracy: 0.577400
Epoch 19, CIFAR-10 Batch 4:  Loss:     0.1169 Validation Accuracy: 0.603600
Epoch 19, CIFAR-10 Batch 5:  Loss:     0.1273 Validation Accuracy: 0.584400
Epoch 20, CIFAR-10 Batch 1:  Loss:     0.1306 Validation Accuracy: 0.583200
Epoch 20, CIFAR-10 Batch 2:  Loss:     0.1023 Validation Accuracy: 0.577400
Epoch 20, CIFAR-10 Batch 3:  Loss:     0.1298 Validation Accuracy: 0.598800
Epoch 20, CIFAR-10 Batch 4:  Loss:     0.1089 Validation Accuracy: 0.609400
Epoch 20, CIFAR-10 Batch 5:  Loss:     0.1115 Validation Accuracy: 0.591200
Epoch 21, CIFAR-10 Batch 1:  Loss:     0.1175 Validation Accuracy: 0.593600
Epoch 21, CIFAR-10 Batch 2:  Loss:     0.0833 Validation Accuracy: 0.586000
Epoch 21, CIFAR-10 Batch 3:  Loss:     0.1131 Validation Accuracy: 0.574800
Epoch 21, CIFAR-10 Batch 4:  Loss:     0.0848 Validation Accuracy: 0.589600
Epoch 21, CIFAR-10 Batch 5:  Loss:     0.1050 Validation Accuracy: 0.574200
Epoch 22, CIFAR-10 Batch 1:  Loss:     0.0736 Validation Accuracy: 0.600200
Epoch 22, CIFAR-10 Batch 2:  Loss:     0.0541 Validation Accuracy: 0.582400
Epoch 22, CIFAR-10 Batch 3:  Loss:     0.0821 Validation Accuracy: 0.610600
Epoch 22, CIFAR-10 Batch 4:  Loss:     0.0616 Validation Accuracy: 0.605000
Epoch 22, CIFAR-10 Batch 5:  Loss:     0.0860 Validation Accuracy: 0.568400
Epoch 23, CIFAR-10 Batch 1:  Loss:     0.0696 Validation Accuracy: 0.594600
Epoch 23, CIFAR-10 Batch 2:  Loss:     0.0436 Validation Accuracy: 0.603800
Epoch 23, CIFAR-10 Batch 3:  Loss:     0.0604 Validation Accuracy: 0.595400
Epoch 23, CIFAR-10 Batch 4:  Loss:     0.0600 Validation Accuracy: 0.600400
Epoch 23, CIFAR-10 Batch 5:  Loss:     0.0786 Validation Accuracy: 0.596200
Epoch 24, CIFAR-10 Batch 1:  Loss:     0.0614 Validation Accuracy: 0.610400
Epoch 24, CIFAR-10 Batch 2:  Loss:     0.0485 Validation Accuracy: 0.589400
Epoch 24, CIFAR-10 Batch 3:  Loss:     0.0532 Validation Accuracy: 0.608400
Epoch 24, CIFAR-10 Batch 4:  Loss:     0.0575 Validation Accuracy: 0.595000
Epoch 24, CIFAR-10 Batch 5:  Loss:     0.0586 Validation Accuracy: 0.596600
Epoch 25, CIFAR-10 Batch 1:  Loss:     0.0474 Validation Accuracy: 0.615800
Epoch 25, CIFAR-10 Batch 2:  Loss:     0.0281 Validation Accuracy: 0.595000
Epoch 25, CIFAR-10 Batch 3:  Loss:     0.0508 Validation Accuracy: 0.610800
Epoch 25, CIFAR-10 Batch 4:  Loss:     0.0525 Validation Accuracy: 0.590600
Epoch 25, CIFAR-10 Batch 5:  Loss:     0.0701 Validation Accuracy: 0.611800
Epoch 26, CIFAR-10 Batch 1:  Loss:     0.0441 Validation Accuracy: 0.602800
Epoch 26, CIFAR-10 Batch 2:  Loss:     0.0299 Validation Accuracy: 0.592400
Epoch 26, CIFAR-10 Batch 3:  Loss:     0.0359 Validation Accuracy: 0.612600
Epoch 26, CIFAR-10 Batch 4:  Loss:     0.0485 Validation Accuracy: 0.599600
Epoch 26, CIFAR-10 Batch 5:  Loss:     0.0452 Validation Accuracy: 0.612200
Epoch 27, CIFAR-10 Batch 1:  Loss:     0.0499 Validation Accuracy: 0.626600
Epoch 27, CIFAR-10 Batch 2:  Loss:     0.0310 Validation Accuracy: 0.597000
Epoch 27, CIFAR-10 Batch 3:  Loss:     0.0411 Validation Accuracy: 0.593000
Epoch 27, CIFAR-10 Batch 4:  Loss:     0.0454 Validation Accuracy: 0.583000
Epoch 27, CIFAR-10 Batch 5:  Loss:     0.0542 Validation Accuracy: 0.602200
Epoch 28, CIFAR-10 Batch 1:  Loss:     0.0277 Validation Accuracy: 0.606200
Epoch 28, CIFAR-10 Batch 2:  Loss:     0.0262 Validation Accuracy: 0.593600
Epoch 28, CIFAR-10 Batch 3:  Loss:     0.0391 Validation Accuracy: 0.610200
Epoch 28, CIFAR-10 Batch 4:  Loss:     0.0251 Validation Accuracy: 0.591600
Epoch 28, CIFAR-10 Batch 5:  Loss:     0.0511 Validation Accuracy: 0.578000
Epoch 29, CIFAR-10 Batch 1:  Loss:     0.0306 Validation Accuracy: 0.610400
Epoch 29, CIFAR-10 Batch 2:  Loss:     0.0189 Validation Accuracy: 0.587800
Epoch 29, CIFAR-10 Batch 3:  Loss:     0.0370 Validation Accuracy: 0.600600
Epoch 29, CIFAR-10 Batch 4:  Loss:     0.0211 Validation Accuracy: 0.596200
Epoch 29, CIFAR-10 Batch 5:  Loss:     0.0317 Validation Accuracy: 0.608800
Epoch 30, CIFAR-10 Batch 1:  Loss:     0.0281 Validation Accuracy: 0.621000
Epoch 30, CIFAR-10 Batch 2:  Loss:     0.0193 Validation Accuracy: 0.604800
Epoch 30, CIFAR-10 Batch 3:  Loss:     0.0400 Validation Accuracy: 0.601200
Epoch 30, CIFAR-10 Batch 4:  Loss:     0.0350 Validation Accuracy: 0.598200
Epoch 30, CIFAR-10 Batch 5:  Loss:     0.0319 Validation Accuracy: 0.588800
Epoch 31, CIFAR-10 Batch 1:  Loss:     0.0243 Validation Accuracy: 0.621000
Epoch 31, CIFAR-10 Batch 2:  Loss:     0.0258 Validation Accuracy: 0.604600
Epoch 31, CIFAR-10 Batch 3:  Loss:     0.0292 Validation Accuracy: 0.600400
Epoch 31, CIFAR-10 Batch 4:  Loss:     0.0216 Validation Accuracy: 0.594000
Epoch 31, CIFAR-10 Batch 5:  Loss:     0.0228 Validation Accuracy: 0.603800
Epoch 32, CIFAR-10 Batch 1:  Loss:     0.0249 Validation Accuracy: 0.623800
Epoch 32, CIFAR-10 Batch 2:  Loss:     0.0286 Validation Accuracy: 0.615400
Epoch 32, CIFAR-10 Batch 3:  Loss:     0.0295 Validation Accuracy: 0.597200
Epoch 32, CIFAR-10 Batch 4:  Loss:     0.0172 Validation Accuracy: 0.601800
Epoch 32, CIFAR-10 Batch 5:  Loss:     0.0307 Validation Accuracy: 0.597400
Epoch 33, CIFAR-10 Batch 1:  Loss:     0.0155 Validation Accuracy: 0.609200
Epoch 33, CIFAR-10 Batch 2:  Loss:     0.0146 Validation Accuracy: 0.623000
Epoch 33, CIFAR-10 Batch 3:  Loss:     0.0214 Validation Accuracy: 0.604400
Epoch 33, CIFAR-10 Batch 4:  Loss:     0.0116 Validation Accuracy: 0.611400
Epoch 33, CIFAR-10 Batch 5:  Loss:     0.0169 Validation Accuracy: 0.617400
Epoch 34, CIFAR-10 Batch 1:  Loss:     0.0147 Validation Accuracy: 0.611000
Epoch 34, CIFAR-10 Batch 2:  Loss:     0.0197 Validation Accuracy: 0.618800
Epoch 34, CIFAR-10 Batch 3:  Loss:     0.0215 Validation Accuracy: 0.611600
Epoch 34, CIFAR-10 Batch 4:  Loss:     0.0096 Validation Accuracy: 0.607400
Epoch 34, CIFAR-10 Batch 5:  Loss:     0.0109 Validation Accuracy: 0.600200
Epoch 35, CIFAR-10 Batch 1:  Loss:     0.0095 Validation Accuracy: 0.604800
Epoch 35, CIFAR-10 Batch 2:  Loss:     0.0120 Validation Accuracy: 0.620600
Epoch 35, CIFAR-10 Batch 3:  Loss:     0.0247 Validation Accuracy: 0.620600
Epoch 35, CIFAR-10 Batch 4:  Loss:     0.0093 Validation Accuracy: 0.601600
Epoch 35, CIFAR-10 Batch 5:  Loss:     0.0108 Validation Accuracy: 0.613200
Epoch 36, CIFAR-10 Batch 1:  Loss:     0.0131 Validation Accuracy: 0.611200
Epoch 36, CIFAR-10 Batch 2:  Loss:     0.0108 Validation Accuracy: 0.618000
Epoch 36, CIFAR-10 Batch 3:  Loss:     0.0118 Validation Accuracy: 0.625000
Epoch 36, CIFAR-10 Batch 4:  Loss:     0.0111 Validation Accuracy: 0.607800
Epoch 36, CIFAR-10 Batch 5:  Loss:     0.0093 Validation Accuracy: 0.605000
Epoch 37, CIFAR-10 Batch 1:  Loss:     0.0171 Validation Accuracy: 0.598000
Epoch 37, CIFAR-10 Batch 2:  Loss:     0.0076 Validation Accuracy: 0.621800
Epoch 37, CIFAR-10 Batch 3:  Loss:     0.0142 Validation Accuracy: 0.623400
Epoch 37, CIFAR-10 Batch 4:  Loss:     0.0185 Validation Accuracy: 0.606800
Epoch 37, CIFAR-10 Batch 5:  Loss:     0.0073 Validation Accuracy: 0.602000
Epoch 38, CIFAR-10 Batch 1:  Loss:     0.0109 Validation Accuracy: 0.598400
Epoch 38, CIFAR-10 Batch 2:  Loss:     0.0075 Validation Accuracy: 0.626000
Epoch 38, CIFAR-10 Batch 3:  Loss:     0.0106 Validation Accuracy: 0.621800
Epoch 38, CIFAR-10 Batch 4:  Loss:     0.0119 Validation Accuracy: 0.624800
Epoch 38, CIFAR-10 Batch 5:  Loss:     0.0077 Validation Accuracy: 0.601000
Epoch 39, CIFAR-10 Batch 1:  Loss:     0.0067 Validation Accuracy: 0.608200
Epoch 39, CIFAR-10 Batch 2:  Loss:     0.0045 Validation Accuracy: 0.616400
Epoch 39, CIFAR-10 Batch 3:  Loss:     0.0210 Validation Accuracy: 0.611000
Epoch 39, CIFAR-10 Batch 4:  Loss:     0.0177 Validation Accuracy: 0.614800
Epoch 39, CIFAR-10 Batch 5:  Loss:     0.0158 Validation Accuracy: 0.620600
Epoch 40, CIFAR-10 Batch 1:  Loss:     0.0129 Validation Accuracy: 0.588200
Epoch 40, CIFAR-10 Batch 2:  Loss:     0.0122 Validation Accuracy: 0.631800
Epoch 40, CIFAR-10 Batch 3:  Loss:     0.0108 Validation Accuracy: 0.614200
Epoch 40, CIFAR-10 Batch 4:  Loss:     0.0058 Validation Accuracy: 0.614600
Epoch 40, CIFAR-10 Batch 5:  Loss:     0.0075 Validation Accuracy: 0.606800
Epoch 41, CIFAR-10 Batch 1:  Loss:     0.0050 Validation Accuracy: 0.588800
Epoch 41, CIFAR-10 Batch 2:  Loss:     0.0040 Validation Accuracy: 0.617600
Epoch 41, CIFAR-10 Batch 3:  Loss:     0.0105 Validation Accuracy: 0.599000
Epoch 41, CIFAR-10 Batch 4:  Loss:     0.0138 Validation Accuracy: 0.610000
Epoch 41, CIFAR-10 Batch 5:  Loss:     0.0066 Validation Accuracy: 0.613400
Epoch 42, CIFAR-10 Batch 1:  Loss:     0.0063 Validation Accuracy: 0.597400
Epoch 42, CIFAR-10 Batch 2:  Loss:     0.0035 Validation Accuracy: 0.612200
Epoch 42, CIFAR-10 Batch 3:  Loss:     0.0072 Validation Accuracy: 0.616000
Epoch 42, CIFAR-10 Batch 4:  Loss:     0.0044 Validation Accuracy: 0.614200
Epoch 42, CIFAR-10 Batch 5:  Loss:     0.0063 Validation Accuracy: 0.609800
Epoch 43, CIFAR-10 Batch 1:  Loss:     0.0071 Validation Accuracy: 0.610400
Epoch 43, CIFAR-10 Batch 2:  Loss:     0.0043 Validation Accuracy: 0.619600
Epoch 43, CIFAR-10 Batch 3:  Loss:     0.0032 Validation Accuracy: 0.610800
Epoch 43, CIFAR-10 Batch 4:  Loss:     0.0077 Validation Accuracy: 0.621600
Epoch 43, CIFAR-10 Batch 5:  Loss:     0.0055 Validation Accuracy: 0.606000
Epoch 44, CIFAR-10 Batch 1:  Loss:     0.0084 Validation Accuracy: 0.602800
Epoch 44, CIFAR-10 Batch 2:  Loss:     0.0060 Validation Accuracy: 0.607400
Epoch 44, CIFAR-10 Batch 3:  Loss:     0.0024 Validation Accuracy: 0.605800
Epoch 44, CIFAR-10 Batch 4:  Loss:     0.0057 Validation Accuracy: 0.623200
Epoch 44, CIFAR-10 Batch 5:  Loss:     0.0059 Validation Accuracy: 0.611800
Epoch 45, CIFAR-10 Batch 1:  Loss:     0.0054 Validation Accuracy: 0.601200
Epoch 45, CIFAR-10 Batch 2:  Loss:     0.0037 Validation Accuracy: 0.617400
Epoch 45, CIFAR-10 Batch 3:  Loss:     0.0096 Validation Accuracy: 0.620000
Epoch 45, CIFAR-10 Batch 4:  Loss:     0.0057 Validation Accuracy: 0.622800
Epoch 45, CIFAR-10 Batch 5:  Loss:     0.0028 Validation Accuracy: 0.597200
Epoch 46, CIFAR-10 Batch 1:  Loss:     0.0050 Validation Accuracy: 0.612200
Epoch 46, CIFAR-10 Batch 2:  Loss:     0.0039 Validation Accuracy: 0.617600
Epoch 46, CIFAR-10 Batch 3:  Loss:     0.0033 Validation Accuracy: 0.610200
Epoch 46, CIFAR-10 Batch 4:  Loss:     0.0091 Validation Accuracy: 0.619200
Epoch 46, CIFAR-10 Batch 5:  Loss:     0.0030 Validation Accuracy: 0.598600
Epoch 47, CIFAR-10 Batch 1:  Loss:     0.0060 Validation Accuracy: 0.611600
Epoch 47, CIFAR-10 Batch 2:  Loss:     0.0031 Validation Accuracy: 0.614800
Epoch 47, CIFAR-10 Batch 3:  Loss:     0.0031 Validation Accuracy: 0.624400
Epoch 47, CIFAR-10 Batch 4:  Loss:     0.0049 Validation Accuracy: 0.621400
Epoch 47, CIFAR-10 Batch 5:  Loss:     0.0035 Validation Accuracy: 0.622600
Epoch 48, CIFAR-10 Batch 1:  Loss:     0.0046 Validation Accuracy: 0.616800
Epoch 48, CIFAR-10 Batch 2:  Loss:     0.0018 Validation Accuracy: 0.612600
Epoch 48, CIFAR-10 Batch 3:  Loss:     0.0022 Validation Accuracy: 0.613600
Epoch 48, CIFAR-10 Batch 4:  Loss:     0.0056 Validation Accuracy: 0.629400
Epoch 48, CIFAR-10 Batch 5:  Loss:     0.0013 Validation Accuracy: 0.617200
Epoch 49, CIFAR-10 Batch 1:  Loss:     0.0023 Validation Accuracy: 0.618000
Epoch 49, CIFAR-10 Batch 2:  Loss:     0.0021 Validation Accuracy: 0.612400
Epoch 49, CIFAR-10 Batch 3:  Loss:     0.0050 Validation Accuracy: 0.621200
Epoch 49, CIFAR-10 Batch 4:  Loss:     0.0046 Validation Accuracy: 0.613200
Epoch 49, CIFAR-10 Batch 5:  Loss:     0.0020 Validation Accuracy: 0.610400
Epoch 50, CIFAR-10 Batch 1:  Loss:     0.0018 Validation Accuracy: 0.622200
Epoch 50, CIFAR-10 Batch 2:  Loss:     0.0023 Validation Accuracy: 0.604400
Epoch 50, CIFAR-10 Batch 3:  Loss:     0.0042 Validation Accuracy: 0.622800
Epoch 50, CIFAR-10 Batch 4:  Loss:     0.0025 Validation Accuracy: 0.598600
Epoch 50, CIFAR-10 Batch 5:  Loss:     0.0037 Validation Accuracy: 0.621400
Epoch 51, CIFAR-10 Batch 1:  Loss:     0.0037 Validation Accuracy: 0.628800
Epoch 51, CIFAR-10 Batch 2:  Loss:     0.0015 Validation Accuracy: 0.625000
Epoch 51, CIFAR-10 Batch 3:  Loss:     0.0037 Validation Accuracy: 0.615400
Epoch 51, CIFAR-10 Batch 4:  Loss:     0.0022 Validation Accuracy: 0.611600
Epoch 51, CIFAR-10 Batch 5:  Loss:     0.0012 Validation Accuracy: 0.621800
Epoch 52, CIFAR-10 Batch 1:  Loss:     0.0024 Validation Accuracy: 0.623800
Epoch 52, CIFAR-10 Batch 2:  Loss:     0.0013 Validation Accuracy: 0.610000
Epoch 52, CIFAR-10 Batch 3:  Loss:     0.0015 Validation Accuracy: 0.617400
Epoch 52, CIFAR-10 Batch 4:  Loss:     0.0022 Validation Accuracy: 0.618400
Epoch 52, CIFAR-10 Batch 5:  Loss:     0.0022 Validation Accuracy: 0.612400
Epoch 53, CIFAR-10 Batch 1:  Loss:     0.0017 Validation Accuracy: 0.615400
Epoch 53, CIFAR-10 Batch 2:  Loss:     0.0012 Validation Accuracy: 0.614000
Epoch 53, CIFAR-10 Batch 3:  Loss:     0.0028 Validation Accuracy: 0.617600
Epoch 53, CIFAR-10 Batch 4:  Loss:     0.0032 Validation Accuracy: 0.628800
Epoch 53, CIFAR-10 Batch 5:  Loss:     0.0037 Validation Accuracy: 0.628800
Epoch 54, CIFAR-10 Batch 1:  Loss:     0.0012 Validation Accuracy: 0.618600
Epoch 54, CIFAR-10 Batch 2:  Loss:     0.0024 Validation Accuracy: 0.619800
Epoch 54, CIFAR-10 Batch 3:  Loss:     0.0044 Validation Accuracy: 0.614200
Epoch 54, CIFAR-10 Batch 4:  Loss:     0.0038 Validation Accuracy: 0.627600
Epoch 54, CIFAR-10 Batch 5:  Loss:     0.0016 Validation Accuracy: 0.618600
Epoch 55, CIFAR-10 Batch 1:  Loss:     0.0012 Validation Accuracy: 0.620800
Epoch 55, CIFAR-10 Batch 2:  Loss:     0.0008 Validation Accuracy: 0.622200
Epoch 55, CIFAR-10 Batch 3:  Loss:     0.0014 Validation Accuracy: 0.605200
Epoch 55, CIFAR-10 Batch 4:  Loss:     0.0020 Validation Accuracy: 0.619200
Epoch 55, CIFAR-10 Batch 5:  Loss:     0.0025 Validation Accuracy: 0.625400
Epoch 56, CIFAR-10 Batch 1:  Loss:     0.0008 Validation Accuracy: 0.623600
Epoch 56, CIFAR-10 Batch 2:  Loss:     0.0014 Validation Accuracy: 0.614800
Epoch 56, CIFAR-10 Batch 3:  Loss:     0.0021 Validation Accuracy: 0.620800
Epoch 56, CIFAR-10 Batch 4:  Loss:     0.0014 Validation Accuracy: 0.621800
Epoch 56, CIFAR-10 Batch 5:  Loss:     0.0009 Validation Accuracy: 0.627400
Epoch 57, CIFAR-10 Batch 1:  Loss:     0.0011 Validation Accuracy: 0.618200
Epoch 57, CIFAR-10 Batch 2:  Loss:     0.0034 Validation Accuracy: 0.625400
Epoch 57, CIFAR-10 Batch 3:  Loss:     0.0026 Validation Accuracy: 0.612200
Epoch 57, CIFAR-10 Batch 4:  Loss:     0.0054 Validation Accuracy: 0.631800
Epoch 57, CIFAR-10 Batch 5:  Loss:     0.0027 Validation Accuracy: 0.621400
Epoch 58, CIFAR-10 Batch 1:  Loss:     0.0010 Validation Accuracy: 0.620600
Epoch 58, CIFAR-10 Batch 2:  Loss:     0.0015 Validation Accuracy: 0.629200
Epoch 58, CIFAR-10 Batch 3:  Loss:     0.0030 Validation Accuracy: 0.621200
Epoch 58, CIFAR-10 Batch 4:  Loss:     0.0017 Validation Accuracy: 0.615800
Epoch 58, CIFAR-10 Batch 5:  Loss:     0.0013 Validation Accuracy: 0.610600
Epoch 59, CIFAR-10 Batch 1:  Loss:     0.0016 Validation Accuracy: 0.622200
Epoch 59, CIFAR-10 Batch 2:  Loss:     0.0013 Validation Accuracy: 0.616800
Epoch 59, CIFAR-10 Batch 3:  Loss:     0.0027 Validation Accuracy: 0.623800
Epoch 59, CIFAR-10 Batch 4:  Loss:     0.0005 Validation Accuracy: 0.623000
Epoch 59, CIFAR-10 Batch 5:  Loss:     0.0016 Validation Accuracy: 0.620800
Epoch 60, CIFAR-10 Batch 1:  Loss:     0.0014 Validation Accuracy: 0.627000
Epoch 60, CIFAR-10 Batch 2:  Loss:     0.0003 Validation Accuracy: 0.624200
Epoch 60, CIFAR-10 Batch 3:  Loss:     0.0025 Validation Accuracy: 0.614600
Epoch 60, CIFAR-10 Batch 4:  Loss:     0.0007 Validation Accuracy: 0.625800
Epoch 60, CIFAR-10 Batch 5:  Loss:     0.0006 Validation Accuracy: 0.617400
Epoch 61, CIFAR-10 Batch 1:  Loss:     0.0006 Validation Accuracy: 0.616000
Epoch 61, CIFAR-10 Batch 2:  Loss:     0.0006 Validation Accuracy: 0.618200
Epoch 61, CIFAR-10 Batch 3:  Loss:     0.0015 Validation Accuracy: 0.617400
Epoch 61, CIFAR-10 Batch 4:  Loss:     0.0005 Validation Accuracy: 0.625000
Epoch 61, CIFAR-10 Batch 5:  Loss:     0.0006 Validation Accuracy: 0.605000
Epoch 62, CIFAR-10 Batch 1:  Loss:     0.0053 Validation Accuracy: 0.600600
Epoch 62, CIFAR-10 Batch 2:  Loss:     0.0008 Validation Accuracy: 0.615800
Epoch 62, CIFAR-10 Batch 3:  Loss:     0.0010 Validation Accuracy: 0.604400
Epoch 62, CIFAR-10 Batch 4:  Loss:     0.0006 Validation Accuracy: 0.623200
Epoch 62, CIFAR-10 Batch 5:  Loss:     0.0005 Validation Accuracy: 0.613800
Epoch 63, CIFAR-10 Batch 1:  Loss:     0.0026 Validation Accuracy: 0.615000
Epoch 63, CIFAR-10 Batch 2:  Loss:     0.0010 Validation Accuracy: 0.619800
Epoch 63, CIFAR-10 Batch 3:  Loss:     0.0026 Validation Accuracy: 0.611600
Epoch 63, CIFAR-10 Batch 4:  Loss:     0.0006 Validation Accuracy: 0.629800
Epoch 63, CIFAR-10 Batch 5:  Loss:     0.0005 Validation Accuracy: 0.618400
Epoch 64, CIFAR-10 Batch 1:  Loss:     0.0010 Validation Accuracy: 0.616400
Epoch 64, CIFAR-10 Batch 2:  Loss:     0.0012 Validation Accuracy: 0.608600
Epoch 64, CIFAR-10 Batch 3:  Loss:     0.0014 Validation Accuracy: 0.622400
Epoch 64, CIFAR-10 Batch 4:  Loss:     0.0019 Validation Accuracy: 0.624600
Epoch 64, CIFAR-10 Batch 5:  Loss:     0.0009 Validation Accuracy: 0.629200

Checkpoint

The model has been saved to disk.

Test Model

Test your model against the test dataset. This will be your final accuracy. You should have an accuracy greater than 50%. If you don't, keep tweaking the model architecture and parameters.


In [15]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
%matplotlib inline
%config InlineBackend.figure_format = 'retina'

import tensorflow as tf
import pickle
import helper
import random

# Set batch size if not already set
try:
    if batch_size:
        pass
except NameError:
    batch_size = 64

save_model_path = './image_classification'
n_samples = 4
top_n_predictions = 3

def test_model():
    """
    Test the saved model against the test dataset
    """

    test_features, test_labels = pickle.load(open('preprocess_training.p', mode='rb'))
    loaded_graph = tf.Graph()

    with tf.Session(graph=loaded_graph) as sess:
        # Load model
        loader = tf.train.import_meta_graph(save_model_path + '.meta')
        loader.restore(sess, save_model_path)

        # Get Tensors from loaded model
        loaded_x = loaded_graph.get_tensor_by_name('x:0')
        loaded_y = loaded_graph.get_tensor_by_name('y:0')
        loaded_keep_prob = loaded_graph.get_tensor_by_name('keep_prob:0')
        loaded_logits = loaded_graph.get_tensor_by_name('logits:0')
        loaded_acc = loaded_graph.get_tensor_by_name('accuracy:0')
        
        # Get accuracy in batches for memory limitations
        test_batch_acc_total = 0
        test_batch_count = 0
        
        for train_feature_batch, train_label_batch in helper.batch_features_labels(test_features, test_labels, batch_size):
            test_batch_acc_total += sess.run(
                loaded_acc,
                feed_dict={loaded_x: train_feature_batch, loaded_y: train_label_batch, loaded_keep_prob: 1.0})
            test_batch_count += 1

        print('Testing Accuracy: {}\n'.format(test_batch_acc_total/test_batch_count))

        # Print Random Samples
        random_test_features, random_test_labels = tuple(zip(*random.sample(list(zip(test_features, test_labels)), n_samples)))
        random_test_predictions = sess.run(
            tf.nn.top_k(tf.nn.softmax(loaded_logits), top_n_predictions),
            feed_dict={loaded_x: random_test_features, loaded_y: random_test_labels, loaded_keep_prob: 1.0})
        helper.display_image_predictions(random_test_features, random_test_labels, random_test_predictions)


test_model()


Testing Accuracy: 0.63759765625

Why 50-70% Accuracy?

You might be wondering why you can't get an accuracy any higher. First things first, 50% isn't bad for a simple CNN. Pure guessing would get you 10% accuracy. However, you might notice people are getting scores well above 70%. That's because we haven't taught you all there is to know about neural networks. We still need to cover a few more techniques.

Submitting This Project

When submitting this project, make sure to run all the cells before saving the notebook. Save the notebook file as "dlnd_image_classification.ipynb" and save it as a HTML file under "File" -> "Download as". Include the "helper.py" and "problem_unittests.py" files in your submission.