In [1]:
import dmdd
import numpy as np
%matplotlib inline


WARNING:root:pymultinest not imported!
WARNING:root:DMDD_MAIN_PATH environment variable not defined, defaulting to:   ~/.dmdd

In [2]:
# shortcut for scattering models corresponding to rates coded in rate_UV:
anapole_model = dmdd.UV_Model('Anapole', ['mass','sigma_anapole'])
SI_model = dmdd.UV_Model('SI', ['mass','sigma_si'])

print 'model: {}, parameters: {}.'.format(anapole_model.name, anapole_model.param_names)
print 'model: {}, parameters: {}.'.format(SI_model.name, SI_model.param_names)


model: Anapole, parameters: ['mass', 'sigma_anapole'].
model: SI, parameters: ['mass', 'sigma_si'].

In [3]:
# intialize an Experiment with XENON target, to be passed to Simulation_AM:
xe = dmdd.Experiment('1xe', 'xenon', 5, 80, 1000, dmdd.eff.efficiency_unit, energy_resolution=True)

In [4]:
xe_lowQ = dmdd.Experiment('1xe', 'xenon', 5, 20, 1000, dmdd.eff.efficiency_unit, energy_resolution=True)

In [5]:
xe_midQ = dmdd.Experiment('1xe', 'xenon', 5, 40, 1000, dmdd.eff.efficiency_unit, energy_resolution=True)

In [6]:
xe_si = dmdd.Simulation_AM('SI', xe_lowQ, SI_model, 
                        {'mass':50.,'sigma_si':75.5}, Qmin = np.asarray([5.]), 
                        Qmax = np.asarray([20.]), 
                        Tmin = 0, Tmax = 365, sigma_si = 75.5, 
                        element = 'xenon', force_sim = True)
#pdf value is .76


Simulation data and/or pickle file does not exist. Forcing simulation.


10
20
30
40
50
60
70
80
90
100
110
120
130
simulated: 131 events (expected 135).

In [7]:
xe_anapole = dmdd.Simulation_AM('Anapole', xe_lowQ, anapole_model, 
                        {'mass':50.,'sigma_anapole':44.25}, Qmin = np.asarray([5.]), 
                        Qmax = np.asarray([20.]), 
                        Tmin = 0, Tmax = 365, sigma_anapole = 44.25, 
                        element = 'xenon', force_sim = True)
# max pdf val for this is about .74


Simulation data and/or pickle file does not exist. Forcing simulation.


10
20
30
40
50
60
70
80
90
100
110
120
130
simulated: 136 events (expected 135).

In [18]:
xe_si_test = dmdd.Simulation_AM('SI', xe_midQ, SI_model, 
                        {'mass':50.,'sigma_si':75.5}, Qmin = np.asarray([5.]), 
                        Qmax = np.asarray([40.]), 
                        Tmin = 0, Tmax = 365, sigma_si = 75.5, 
                        element = 'xenon', force_sim = True)

#max pdf value is 3.3


Simulation data and/or pickle file does not exist. Forcing simulation.


10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
simulated: 158 events (expected 166).

In [13]:
xe_ana_test = dmdd.Simulation_AM('Anapole', xe_midQ, anapole_model, 
                        {'mass':50.,'sigma_anapole':44.25}, Qmin = np.asarray([5.]), 
                        Qmax = np.asarray([40.]), 
                        Tmin = 0, Tmax = 365, sigma_anapole = 44.25, 
                        element = 'xenon', force_sim = True)
# max pdf val for this is about 3.9


Simulation data and/or pickle file does not exist. Forcing simulation.


10
20
30
40
50
60
70
80
90
100
110
120
130
140
simulated: 149 events (expected 165).

In [6]:
xe_anapole = dmdd.Simulation_AM('Anapole', xe, anapole_model, 
                        {'mass':50.,'sigma_anapole':44.25}, Qmin = np.asarray([5.]), 
                        Qmax = np.asarray([80.]), 
                        Tmin = 0, Tmax = 365, sigma_anapole = 44.25, 
                        element = 'xenon', force_sim = True)
#max pdf value is 149


Simulation data and/or pickle file does not exist. Forcing simulation.


10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
simulated: 178 events (expected 168).

In [7]:
xe_SI = dmdd.Simulation_AM('SI', xe, SI_model, 
                        {'mass':50.,'sigma_si':75.5}, Qmin = np.asarray([5.]), 
                        Qmax = np.asarray([80.]), 
                        Tmin = 0, Tmax = 365, sigma_si = 75.5, 
                        element = 'xenon', force_sim = True)
#max pdf value is like 600


Simulation data and/or pickle file does not exist. Forcing simulation.


10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
simulated: 164 events (expected 169).

In [ ]: