In [11]:
import occiput
occiput.initialise()
import numpy
import time
In [12]:
# Dynamic PET acquisition:
SCAN = occiput.Reconstruction.PET.PET_Dynamic_Scan();
# Load list-mode data:
filename = '/Users/spedemon/Desktop/mMR_data/2013_12_12_pineapple/listmode/PET_ACQ_85_20131212122532-0.l.hdr'
N_time_bins = 50
SCAN.load_listmode_file(filename,N_time_bins);
In [13]:
SCAN.ilang_model
Out[13]:
In [14]:
# Display static measurement:
measurement = SCAN.static.uncompressed_measurement()
measurement.display(scale=6)
Out[14]:
In [15]:
# Display dynamic measurements:
SCAN.display_measurements(scale=2)
Out[15]:
In [16]:
# Reconstruct static image:
activity = SCAN.static.estimate_activity()
SCAN.static.volume_render(activity,scale=8)
Out[16]:
In [17]:
# Reconstruct time frame 50:
activity19 = SCAN.frame19.estimate_activity()
SCAN.static.volume_render(activity19,scale=8)
Out[17]:
In [16]:
# Joint reconstruction of motion and activity:
# activity_moco = SCAN.estimate_activity_motion()
activity_moco = occiput.DataSources.FileSource('/Users/spedemon/Desktop/activity_moco_matlab.nii')
SCAN.static.volume_render(activity_moco,scale=8)
Out[16]:
In [16]:
In [16]:
In [16]:
In [16]:
In [7]:
In [ ]:
In [ ]:
In [18]:
In [ ]:
In [ ]:
In [6]:
In [6]:
In [6]:
In [47]:
In [6]:
In [6]:
In [6]:
In [55]:
In [21]:
In [21]:
In [21]:
In [21]:
In [9]:
In [8]:
In [8]:
In [ ]: