In [11]:
import occiput
occiput.initialise()
import numpy
import time



In [12]:
# Dynamic PET acquisition: 
SCAN = occiput.Reconstruction.PET.PET_Dynamic_Scan();

# Load list-mode data: 
filename    = '/Users/spedemon/Desktop/mMR_data/2013_12_12_pineapple/listmode/PET_ACQ_85_20131212122532-0.l.hdr'
N_time_bins = 50
SCAN.load_listmode_file(filename,N_time_bins);



In [13]:
SCAN.ilang_model


Out[13]:

In [14]:
# Display static measurement: 
measurement = SCAN.static.uncompressed_measurement()
measurement.display(scale=6)


Out[14]:

In [15]:
# Display dynamic measurements: 
SCAN.display_measurements(scale=2)


Out[15]:

In [16]:
# Reconstruct static image: 
activity = SCAN.static.estimate_activity() 
SCAN.static.volume_render(activity,scale=8)


Out[16]:

In [17]:
# Reconstruct time frame 50: 
activity19 = SCAN.frame19.estimate_activity() 
SCAN.static.volume_render(activity19,scale=8)


Out[17]:

In [16]:
# Joint reconstruction of motion and activity: 
# activity_moco = SCAN.estimate_activity_motion() 
activity_moco = occiput.DataSources.FileSource('/Users/spedemon/Desktop/activity_moco_matlab.nii') 
SCAN.static.volume_render(activity_moco,scale=8)


Out[16]:

In [16]:


In [16]:


In [16]:


In [16]:


In [7]:


In [ ]:


In [ ]:


In [18]:


In [ ]:


In [ ]:


In [6]:


In [6]:


In [6]:


In [47]:


In [6]:


In [6]:


In [6]:


In [55]:


In [21]:


In [21]:


In [21]:


In [21]:


In [9]:


In [8]:


In [8]:


In [ ]: