In [1]:
from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer
from sklearn.neighbors import KNeighborsClassifier
from sklearn.cross_validation import StratifiedKFold
import numpy as np
In [2]:
mc = ["Human machine interface for lab abc computer applications",
"A survey of user opinion of computer system response time",
"The EPS user interface management system",
"System and human system engineering testing of EPS",
"Relation of user perceived response time to error measurement",
"The generation of random binary unordered trees",
"The intersection graph of paths in trees",
"Graph minors IV Widths of trees and well quasi ordering",
"Graph minors A survey"]
In [3]:
def multiclass_matthews_corrcoef(y_true,y_pred):
cov_mat = np.cov(y_true,y_pred)
mcc = cov_mat[0][1]/np.sqrt(cov_mat[0][0]*cov_mat[1][1])
return mcc
In [4]:
def split_mc_corpus(corpus):
words = corpus
return [word for word in words]
bow_transformer = CountVectorizer(analyzer=split_mc_corpus).fit(mc)
messages_bow = bow_transformer.transform(mc)
tfidf_transformer = TfidfTransformer().fit(messages_bow)
vectors = tfidf_transformer.transform(messages_bow)
klasses = np.array([1,1,1,2,2,2,3,3,3])
In [14]:
from sklearn.neighbors import KNeighborsClassifier
from sklearn.cross_validation import KFold
kf = StratifiedKFold(klasses, n_folds=2)
knn = KNeighborsClassifier(n_neighbors=2)
mccs = []
for train, test in kf:
knn.fit(vectors[train],klasses[train])
preds = [knn.predict(vectors[t])[0] for t in test]
mccs.append(multiclass_matthews_corrcoef(klasses[test],preds))
print "Mean MCC", np.mean(mccs)
In [10]:
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import StratifiedKFold
from sklearn import cross_validation
X = vectors
y = klasses
skf = StratifiedKFold(n_folds=2)
skf.get_n_splits(X, y)
for train_index, test_index in skf.split(X, y):
X_train, X_test = X[train_index], X[test_index]
y_train, y_test = y[train_index], y[test_index]
mccs = []
classifiers = {'KNN' : KNeighborsClassifier(1)
}
for name, clf in classifiers.items():
clf.fit(X_test,y_test)
preds = [clf.predict(X_test)[t[0]] for t in enumerate(X_test)]
mccs.append(multiclass_matthews_corrcoef(y_test,preds))
print name, "MCC: %0.3f"% np.mean(mccs)
mccs = []
In [ ]: