Epoch 1/375
2000/2000 [==============================] - 70s 35ms/step - loss: 1.8876 - acc: 0.2806 - val_loss: 1.5358 - val_acc: 0.4272
Epoch 00001: val_acc improved from -inf to 0.42720, saving model to weights.hdf5
Epoch 2/375
2000/2000 [==============================] - 68s 34ms/step - loss: 1.4104 - acc: 0.4832 - val_loss: 1.2457 - val_acc: 0.5531
Epoch 00002: val_acc improved from 0.42720 to 0.55310, saving model to weights.hdf5
Epoch 3/375
2000/2000 [==============================] - 68s 34ms/step - loss: 1.1506 - acc: 0.5845 - val_loss: 1.0791 - val_acc: 0.6155
Epoch 00003: val_acc improved from 0.55310 to 0.61550, saving model to weights.hdf5
Epoch 4/375
2000/2000 [==============================] - 68s 34ms/step - loss: 0.9973 - acc: 0.6459 - val_loss: 0.8745 - val_acc: 0.6932
Epoch 00004: val_acc improved from 0.61550 to 0.69320, saving model to weights.hdf5
Epoch 5/375
2000/2000 [==============================] - 68s 34ms/step - loss: 0.8734 - acc: 0.6939 - val_loss: 0.9327 - val_acc: 0.6990
Epoch 00005: val_acc improved from 0.69320 to 0.69900, saving model to weights.hdf5
Epoch 6/375
2000/2000 [==============================] - 68s 34ms/step - loss: 0.7891 - acc: 0.7249 - val_loss: 0.6772 - val_acc: 0.7723
Epoch 00006: val_acc improved from 0.69900 to 0.77230, saving model to weights.hdf5
Epoch 7/375
2000/2000 [==============================] - 68s 34ms/step - loss: 0.7258 - acc: 0.7462 - val_loss: 0.6660 - val_acc: 0.7740
Epoch 00007: val_acc improved from 0.77230 to 0.77400, saving model to weights.hdf5
Epoch 8/375
2000/2000 [==============================] - 68s 34ms/step - loss: 0.6730 - acc: 0.7667 - val_loss: 0.6260 - val_acc: 0.7915
Epoch 00008: val_acc improved from 0.77400 to 0.79150, saving model to weights.hdf5
Epoch 9/375
807/2000 [===========>..................] - ETA: 38s - loss: 0.6481 - acc: 0.7739
KeyboardInterruptTraceback (most recent call last)
<ipython-input-7-f5fe8fc9366d> in <module>()
38 epochs=nb_epoch,
39 validation_data=(X_test, Y_test),
---> 40 callbacks=callbacks_list, verbose=1)
41
42
/usr/lib64/python2.7/site-packages/keras/legacy/interfaces.pyc in wrapper(*args, **kwargs)
89 warnings.warn('Update your `' + object_name + '` call to the ' +
90 'Keras 2 API: ' + signature, stacklevel=2)
---> 91 return func(*args, **kwargs)
92 wrapper._original_function = func
93 return wrapper
/usr/lib64/python2.7/site-packages/keras/engine/training.pyc in fit_generator(self, generator, steps_per_epoch, epochs, verbose, callbacks, validation_data, validation_steps, class_weight, max_queue_size, workers, use_multiprocessing, shuffle, initial_epoch)
1416 use_multiprocessing=use_multiprocessing,
1417 shuffle=shuffle,
-> 1418 initial_epoch=initial_epoch)
1419
1420 @interfaces.legacy_generator_methods_support
/usr/lib64/python2.7/site-packages/keras/engine/training_generator.pyc in fit_generator(model, generator, steps_per_epoch, epochs, verbose, callbacks, validation_data, validation_steps, class_weight, max_queue_size, workers, use_multiprocessing, shuffle, initial_epoch)
215 outs = model.train_on_batch(x, y,
216 sample_weight=sample_weight,
--> 217 class_weight=class_weight)
218
219 outs = to_list(outs)
/usr/lib64/python2.7/site-packages/keras/engine/training.pyc in train_on_batch(self, x, y, sample_weight, class_weight)
1215 ins = x + y + sample_weights
1216 self._make_train_function()
-> 1217 outputs = self.train_function(ins)
1218 return unpack_singleton(outputs)
1219
/usr/lib64/python2.7/site-packages/keras/backend/tensorflow_backend.pyc in __call__(self, inputs)
2713 return self._legacy_call(inputs)
2714
-> 2715 return self._call(inputs)
2716 else:
2717 if py_any(is_tensor(x) for x in inputs):
/usr/lib64/python2.7/site-packages/keras/backend/tensorflow_backend.pyc in _call(self, inputs)
2673 fetched = self._callable_fn(*array_vals, run_metadata=self.run_metadata)
2674 else:
-> 2675 fetched = self._callable_fn(*array_vals)
2676 return fetched[:len(self.outputs)]
2677
/usr/lib/python2.7/site-packages/tensorflow/python/client/session.pyc in __call__(self, *args, **kwargs)
1397 ret = tf_session.TF_SessionRunCallable(
1398 self._session._session, self._handle, args, status,
-> 1399 run_metadata_ptr)
1400 if run_metadata:
1401 proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)
KeyboardInterrupt: