/usr/lib/python2.7/site-packages/ipykernel_launcher.py:34: UserWarning: The semantics of the Keras 2 argument `steps_per_epoch` is not the same as the Keras 1 argument `samples_per_epoch`. `steps_per_epoch` is the number of batches to draw from the generator at each epoch. Basically steps_per_epoch = samples_per_epoch/batch_size. Similarly `nb_val_samples`->`validation_steps` and `val_samples`->`steps` arguments have changed. Update your method calls accordingly.
/usr/lib/python2.7/site-packages/ipykernel_launcher.py:34: UserWarning: Update your `fit_generator` call to the Keras 2 API: `fit_generator(<keras_pre..., verbose=1, validation_data=(array([[[..., steps_per_epoch=1562, epochs=350, callbacks=[<keras.ca...)`
Epoch 1/350
1562/1562 [==============================] - 56s 36ms/step - loss: 1.9416 - acc: 0.2566 - val_loss: 1.6051 - val_acc: 0.3933
Epoch 00001: val_acc improved from -inf to 0.39330, saving model to weights.hdf5
Epoch 2/350
1562/1562 [==============================] - 54s 34ms/step - loss: 1.5343 - acc: 0.4280 - val_loss: 1.3193 - val_acc: 0.5050
Epoch 00002: val_acc improved from 0.39330 to 0.50500, saving model to weights.hdf5
Epoch 3/350
825/1562 [==============>...............] - ETA: 23s - loss: 1.3257 - acc: 0.5188
KeyboardInterruptTraceback (most recent call last)
<ipython-input-7-376612ee6a5e> in <module>()
32 nb_epoch=nb_epoch,
33 validation_data=(X_test, Y_test),
---> 34 callbacks=callbacks_list, verbose=1)
35
36 im = cv2.resize(cv2.imread('image.jpg'), (224, 224)).astype(np.float32)
/usr/lib64/python2.7/site-packages/keras/legacy/interfaces.pyc in wrapper(*args, **kwargs)
89 warnings.warn('Update your `' + object_name + '` call to the ' +
90 'Keras 2 API: ' + signature, stacklevel=2)
---> 91 return func(*args, **kwargs)
92 wrapper._original_function = func
93 return wrapper
/usr/lib64/python2.7/site-packages/keras/engine/training.pyc in fit_generator(self, generator, steps_per_epoch, epochs, verbose, callbacks, validation_data, validation_steps, class_weight, max_queue_size, workers, use_multiprocessing, shuffle, initial_epoch)
1416 use_multiprocessing=use_multiprocessing,
1417 shuffle=shuffle,
-> 1418 initial_epoch=initial_epoch)
1419
1420 @interfaces.legacy_generator_methods_support
/usr/lib64/python2.7/site-packages/keras/engine/training_generator.pyc in fit_generator(model, generator, steps_per_epoch, epochs, verbose, callbacks, validation_data, validation_steps, class_weight, max_queue_size, workers, use_multiprocessing, shuffle, initial_epoch)
215 outs = model.train_on_batch(x, y,
216 sample_weight=sample_weight,
--> 217 class_weight=class_weight)
218
219 outs = to_list(outs)
/usr/lib64/python2.7/site-packages/keras/engine/training.pyc in train_on_batch(self, x, y, sample_weight, class_weight)
1215 ins = x + y + sample_weights
1216 self._make_train_function()
-> 1217 outputs = self.train_function(ins)
1218 return unpack_singleton(outputs)
1219
/usr/lib64/python2.7/site-packages/keras/backend/tensorflow_backend.pyc in __call__(self, inputs)
2713 return self._legacy_call(inputs)
2714
-> 2715 return self._call(inputs)
2716 else:
2717 if py_any(is_tensor(x) for x in inputs):
/usr/lib64/python2.7/site-packages/keras/backend/tensorflow_backend.pyc in _call(self, inputs)
2673 fetched = self._callable_fn(*array_vals, run_metadata=self.run_metadata)
2674 else:
-> 2675 fetched = self._callable_fn(*array_vals)
2676 return fetched[:len(self.outputs)]
2677
/usr/lib/python2.7/site-packages/tensorflow/python/client/session.pyc in __call__(self, *args, **kwargs)
1397 ret = tf_session.TF_SessionRunCallable(
1398 self._session._session, self._handle, args, status,
-> 1399 run_metadata_ptr)
1400 if run_metadata:
1401 proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)
KeyboardInterrupt: