In [1]:
%run ~/relmapping/annot/notebooks/__init__.ipynb
In [2]:
# (Boeck et al., 2016)
#!cd ~/relmapping/wget; wget -m --no-parent http://genome.cshlp.org/content/suppl/2016/09/20/gr.202663.115.DC1/Supplemental_Table_S13.gz
fp_ = 'wget/genome.cshlp.org/content/suppl/2016/09/20/gr.202663.115.DC1/Supplemental_Table_S13.txt'
df_expr = pd.read_csv(fp_, delim_whitespace=True)#, index_col='WormbaseName')
len(df_expr)
Out[2]:
In [3]:
#!cd ~/relmapping/wget; wget -m --no-parent http://genome.cshlp.org/content/suppl/2016/09/20/gr.202663.115.DC1/Supplemental_Fig_S4.docx
print(len(df_expr.query('L1 > 0.02'))) # eyeballed from fig4: 13.5K for L1
print(len(df_expr.query('DE > 0.02'))) # eyeballed from fig5: 15K for DE
In [4]:
# Select time points roughly matched with wt LE to YA
df_expr[df_expr.columns[16:24]].head()
Out[4]:
In [6]:
# Calculate numnber of genes with dcpm > 0.02 (as used in Boeck et al., 2016) in any stage
n_ = sum((df_expr[df_expr.columns[16:24]] > 0.02).any(axis=1))
print("%d of %d genes with dcpm > 0.02 in development (Fig S4 threshold)" % (n_, len(df_expr)))
n_ = sum((df_expr[df_expr.columns[16:24]] > 0.07).any(axis=1))
print("%d of %d genes with dcpm > 0.07 in development (Fig 1 & DE analyses' threshold)" % (n_, len(df_expr)))
In [ ]: