In [1]:
%config InlineBackend.figure_format = 'png'
load_iris()
In [2]:
from sklearn.datasets import load_iris
iris = load_iris()
print(iris.DESCR)
In [3]:
df = pd.DataFrame(iris.data, columns=iris.feature_names)
sy = pd.Series(iris.target, dtype="category")
sy = sy.cat.rename_categories(iris.target_names)
df['species'] = sy
df.tail()
Out[3]:
In [4]:
sns.pairplot(df, hue="species")
plt.show()
In [5]:
from sklearn.datasets import fetch_20newsgroups
newsgroups = fetch_20newsgroups(subset='all')
print(newsgroups.description)
print(newsgroups.keys())
In [6]:
from pprint import pprint
pprint(list(newsgroups.target_names))
In [7]:
print(newsgroups.data[1])
print("=" * 80)
print(newsgroups.target_names[newsgroups.target[1]])
In [8]:
from sklearn.datasets import fetch_olivetti_faces
olivetti = fetch_olivetti_faces()
print(olivetti.DESCR)
print(olivetti.keys())
In [9]:
N=2; M=5;
fig = plt.figure(figsize=(8,5))
plt.subplots_adjust(top=1, bottom=0, hspace=0, wspace=0.05)
klist = np.random.choice(range(len(olivetti.data)), N * M)
for i in range(N):
for j in range(M):
k = klist[i*M+j]
ax = fig.add_subplot(N, M, i*M+j+1)
ax.imshow(olivetti.images[k], cmap=plt.cm.bone);
ax.grid(False)
ax.xaxis.set_ticks([])
ax.yaxis.set_ticks([])
plt.title(olivetti.target[k])
plt.tight_layout()
plt.show()
fetch_lfw_people()유명인 얼굴 이미지
Parameters
In [10]:
from sklearn.datasets import fetch_lfw_people
lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4)
print(lfw_people.DESCR)
print(lfw_people.keys())
In [11]:
N=2; M=5;
fig = plt.figure(figsize=(8,5))
plt.subplots_adjust(top=1, bottom=0, hspace=0.1, wspace=0.05)
klist = np.random.choice(range(len(lfw_people.data)), N * M)
for i in range(N):
for j in range(M):
k = klist[i*M+j]
ax = fig.add_subplot(N, M, i*M+j+1)
ax.imshow(lfw_people.images[k], cmap=plt.cm.bone);
ax.grid(False)
ax.xaxis.set_ticks([])
ax.yaxis.set_ticks([])
plt.title(lfw_people.target_names[lfw_people.target[k]])
plt.tight_layout()
plt.show()
In [12]:
from sklearn.datasets import fetch_lfw_pairs
lfw_pairs = fetch_lfw_pairs(resize=0.4)
print(lfw_pairs.DESCR)
print(lfw_pairs.keys())
In [13]:
N=2; M=5;
fig = plt.figure(figsize=(8,5))
plt.subplots_adjust(top=1, bottom=0, hspace=0.01, wspace=0.05)
klist = np.random.choice(range(len(lfw_pairs.data)), M)
for j in range(M):
k = klist[j]
ax1 = fig.add_subplot(N, M, j+1)
ax1.imshow(lfw_pairs.pairs [k][0], cmap=plt.cm.bone);
ax1.grid(False)
ax1.xaxis.set_ticks([])
ax1.yaxis.set_ticks([])
plt.title(lfw_pairs.target_names[lfw_pairs.target[k]])
ax2 = fig.add_subplot(N, M, j+1 + M)
ax2.imshow(lfw_pairs.pairs [k][1], cmap=plt.cm.bone);
ax2.grid(False)
ax2.xaxis.set_ticks([])
ax2.yaxis.set_ticks([])
plt.tight_layout()
plt.show()
In [14]:
from sklearn.datasets import load_digits
digits = load_digits()
print(digits.DESCR)
print(digits.keys())
In [15]:
N=2; M=5;
fig = plt.figure(figsize=(10,5))
plt.subplots_adjust(top=1, bottom=0, hspace=0, wspace=0.05)
for i in range(N):
for j in range(M):
k = i*M+j
ax = fig.add_subplot(N, M, k+1)
ax.imshow(digits.images[k], cmap=plt.cm.bone, interpolation="none");
ax.grid(False)
ax.xaxis.set_ticks([])
ax.yaxis.set_ticks([])
plt.title(digits.target_names[k])
plt.tight_layout()
plt.show()
fetch_mldata()
In [16]:
from sklearn.datasets.mldata import fetch_mldata
mnist = fetch_mldata('MNIST original')
mnist.keys()
Out[16]:
In [17]:
N=2; M=5;
fig = plt.figure(figsize=(8,5))
plt.subplots_adjust(top=1, bottom=0, hspace=0, wspace=0.05)
klist = np.random.choice(range(len(mnist.data)), N * M)
for i in range(N):
for j in range(M):
k = klist[i*M+j]
ax = fig.add_subplot(N, M, i*M+j+1)
ax.imshow(mnist.data[k].reshape(28, 28), cmap=plt.cm.bone, interpolation="nearest");
ax.grid(False)
ax.xaxis.set_ticks([])
ax.yaxis.set_ticks([])
plt.title(mnist.target[k])
plt.tight_layout()
plt.show()