In [3]:
import pandas
folder = '/Users/garcia/Dropbox/simulationResults/repeatedgameswithmistakes/third_trial_harvard/'
In [5]:
df = pandas.read_csv(folder + 'tr_3_time_game_2_scheme_bias_mistake_0.0.csv', nrows=100)
In [27]:
one_pop = df['population'][18]
In [18]:
one_pop
Out[18]:
In [16]:
(len(str(one_pop).split(':'))/2)
Out[16]:
In [39]:
splitted = str(one_pop).split(';')
In [40]:
pairs = zip(splitted[::2], splitted[1::2])
In [42]:
pairs[0][0]
Out[42]:
In [43]:
splitted
Out[43]:
In [46]:
def build_dict(population_string):
ans = dict()
splitted = str(population_string).split(';')
for pair in splitted:
strategy = pair.split(':')[0]
count = int(pair.split(':')[1])
ans[strategy] = count
return ans
In [47]:
build_dict(one_pop)
Out[47]:
In [48]:
resultado = _
In [88]:
def average_automaton_size(diccionario):
number_of_individuals = np.sum(diccionario.values())
ans = 0.0
for key, value in diccionario.items():
freq = float(value)
states = float(key.count('/'))
ans = ans + freq*states
return ans/number_of_individuals
In [83]:
resultado.items()
Out[83]:
In [87]:
average_automaton_size(resultado)
Out[87]:
In [84]:
(14*2+186)/200.0
Out[84]:
In [ ]: