In [1]:
import numpy as np
from scipy.sparse import coo_matrix, csr_matrix
In [2]:
with open("f1.txt") as f:
i = []
j = []
for line in f:
fd = line.strip().split()
i.append(int(fd[0]))
j.append(int(fd[1]))
j.append(int(fd[0]))
i.append(int(fd[1]))
N = 626892
F1 = coo_matrix((np.arange(len(i)), (i, j)), shape=(N, N))
F1.nnz
Out[2]:
In [3]:
with open("f2.txt") as f:
i = []
j = []
for line in f:
fd = line.strip().split()
i.append(int(fd[0]))
j.append(int(fd[1]))
j.append(int(fd[0]))
i.append(int(fd[1]))
N = 626892
F2 = coo_matrix((np.arange(len(i)), (i, j)), shape=(N, N))
F2.nnz
Out[3]:
In [4]:
F1 = F1.tocsr()
F2 = F2.tocsr()
F1.nnz, F2.nnz
Out[4]:
In [5]:
%time
S = F1 + F1
S.nnz
Out[5]:
In [6]:
%time
S = (F1+F2) * (F1+F2)
S.nnz
Out[6]: