In [1]:
import numpy as np
import pandas as pd
from pandas import DataFrame, Series

In [6]:
ser1 = Series([0,1,2], index=['A','B','C'])

ser1


Out[6]:
A    0
B    1
C    2
dtype: int64

In [9]:
ser2 = Series([3,4,5,6], index=['A','B','C', 'D'])

ser2


Out[9]:
A    3
B    4
C    5
D    6
dtype: int64

In [10]:
ser1 + ser2


Out[10]:
A    3.0
B    5.0
C    7.0
D    NaN
dtype: float64

In [13]:
# dataframes
df1 = DataFrame(np.arange(4).reshape((2,2)), columns=list('AB'), index=['SF','LA'])
df1


Out[13]:
A B
SF 0 1
LA 2 3

In [20]:
df2 = DataFrame(np.arange(9).reshape((3,3)), columns=list('ADC'), index=['SF','LA', 'NY'])
df2


Out[20]:
A D C
SF 0 1 2
LA 3 4 5
NY 6 7 8

In [15]:
df1 + df2


Out[15]:
A B C D
LA 5.0 NaN NaN NaN
NY NaN NaN NaN NaN
SF 0.0 NaN NaN NaN

In [16]:
# replacing null values
df1.add(df2, fill_value=0)


Out[16]:
A B C D
LA 5.0 3.0 5.0 4.0
NY 6.0 NaN 8.0 7.0
SF 0.0 1.0 2.0 1.0

In [17]:
# operation between series and dataframes

In [18]:
ser3 = df2.ix[0]
ser3


Out[18]:
A    0
D    1
C    2
Name: SF, dtype: int32

In [21]:
df2-ser3


Out[21]:
A D C
SF 0 0 0
LA 3 3 3
NY 6 6 6

In [ ]: