In [2]:
import pandas as pd

In [3]:
europe = pd.read_csv('data/gapminder_gdp_europe.csv', index_col='country')

In [7]:
europe.describe()


Out[7]:
gdpPercap_1952 gdpPercap_1957 gdpPercap_1962 gdpPercap_1967 gdpPercap_1972 gdpPercap_1977 gdpPercap_1982 gdpPercap_1987 gdpPercap_1992 gdpPercap_1997 gdpPercap_2002 gdpPercap_2007
count 30.000000 30.000000 30.000000 30.000000 30.000000 30.000000 30.000000 30.000000 30.000000 30.000000 30.000000 30.000000
mean 5661.057435 6963.012816 8365.486814 10143.823757 12479.575246 14283.979110 15617.896551 17214.310727 17061.568084 19076.781802 21711.732422 25054.481636
std 3114.060493 3677.950146 4199.193906 4724.983889 5509.691411 5874.464896 6453.234827 7482.957960 9109.804361 10065.457716 11197.355517 11800.339811
min 973.533195 1353.989176 1709.683679 2172.352423 2860.169750 3528.481305 3630.880722 3738.932735 2497.437901 3193.054604 4604.211737 5937.029526
25% 3241.132406 4394.874315 5373.536612 6657.939047 9057.708095 10360.030300 11449.870115 12274.570680 8667.113214 9946.599306 11721.851483 14811.898210
50% 5142.469716 6066.721495 7515.733738 9366.067033 12326.379990 14225.754515 15322.824720 16215.485895 17550.155945 19596.498550 23674.863230 28054.065790
75% 7236.794919 9597.220820 10931.085347 13277.182057 16523.017127 19052.412163 20901.729730 23321.587723 25034.243045 27189.530312 30373.363307 33817.962533
max 14734.232750 17909.489730 20431.092700 22966.144320 27195.113040 26982.290520 28397.715120 31540.974800 33965.661150 41283.164330 44683.975250 49357.190170

In [8]:
europe.head(3)


Out[8]:
gdpPercap_1952 gdpPercap_1957 gdpPercap_1962 gdpPercap_1967 gdpPercap_1972 gdpPercap_1977 gdpPercap_1982 gdpPercap_1987 gdpPercap_1992 gdpPercap_1997 gdpPercap_2002 gdpPercap_2007
country
Albania 1601.056136 1942.284244 2312.888958 2760.196931 3313.422188 3533.00391 3630.880722 3738.932735 2497.437901 3193.054604 4604.211737 5937.029526
Austria 6137.076492 8842.598030 10750.721110 12834.602400 16661.625600 19749.42230 21597.083620 23687.826070 27042.018680 29095.920660 32417.607690 36126.492700
Belgium 8343.105127 9714.960623 10991.206760 13149.041190 16672.143560 19117.97448 20979.845890 22525.563080 25575.570690 27561.196630 30485.883750 33692.605080

In [9]:
europe.iloc[0,0]


Out[9]:
1601.056136

In [10]:
europe.loc['Albania', 'gdpPercap_1952']


Out[10]:
1601.056136

In [13]:
europe.loc['Germany',:]


Out[13]:
gdpPercap_1952     7144.114393
gdpPercap_1957    10187.826650
gdpPercap_1962    12902.462910
gdpPercap_1967    14745.625610
gdpPercap_1972    18016.180270
gdpPercap_1977    20512.921230
gdpPercap_1982    22031.532740
gdpPercap_1987    24639.185660
gdpPercap_1992    26505.303170
gdpPercap_1997    27788.884160
gdpPercap_2002    30035.801980
gdpPercap_2007    32170.374420
Name: Germany, dtype: float64

In [14]:
europe.loc[:,'gdpPercap_2007']


Out[14]:
country
Albania                    5937.029526
Austria                   36126.492700
Belgium                   33692.605080
Bosnia and Herzegovina     7446.298803
Bulgaria                  10680.792820
Croatia                   14619.222720
Czech Republic            22833.308510
Denmark                   35278.418740
Finland                   33207.084400
France                    30470.016700
Germany                   32170.374420
Greece                    27538.411880
Hungary                   18008.944440
Iceland                   36180.789190
Ireland                   40675.996350
Italy                     28569.719700
Montenegro                 9253.896111
Netherlands               36797.933320
Norway                    49357.190170
Poland                    15389.924680
Portugal                  20509.647770
Romania                   10808.475610
Serbia                     9786.534714
Slovak Republic           18678.314350
Slovenia                  25768.257590
Spain                     28821.063700
Sweden                    33859.748350
Switzerland               37506.419070
Turkey                     8458.276384
United Kingdom            33203.261280
Name: gdpPercap_2007, dtype: float64

In [16]:
dir(europe)


Out[16]:
['T',
 '_AXIS_ALIASES',
 '_AXIS_IALIASES',
 '_AXIS_LEN',
 '_AXIS_NAMES',
 '_AXIS_NUMBERS',
 '_AXIS_ORDERS',
 '_AXIS_REVERSED',
 '_AXIS_SLICEMAP',
 '__abs__',
 '__add__',
 '__and__',
 '__array__',
 '__array_wrap__',
 '__bool__',
 '__bytes__',
 '__class__',
 '__contains__',
 '__copy__',
 '__deepcopy__',
 '__delattr__',
 '__delitem__',
 '__dict__',
 '__dir__',
 '__div__',
 '__doc__',
 '__eq__',
 '__finalize__',
 '__floordiv__',
 '__format__',
 '__ge__',
 '__getattr__',
 '__getattribute__',
 '__getitem__',
 '__getstate__',
 '__gt__',
 '__hash__',
 '__iadd__',
 '__iand__',
 '__ifloordiv__',
 '__imod__',
 '__imul__',
 '__init__',
 '__init_subclass__',
 '__invert__',
 '__ior__',
 '__ipow__',
 '__isub__',
 '__iter__',
 '__itruediv__',
 '__ixor__',
 '__le__',
 '__len__',
 '__lt__',
 '__matmul__',
 '__mod__',
 '__module__',
 '__mul__',
 '__ne__',
 '__neg__',
 '__new__',
 '__nonzero__',
 '__or__',
 '__pos__',
 '__pow__',
 '__radd__',
 '__rand__',
 '__rdiv__',
 '__reduce__',
 '__reduce_ex__',
 '__repr__',
 '__rfloordiv__',
 '__rmatmul__',
 '__rmod__',
 '__rmul__',
 '__ror__',
 '__round__',
 '__rpow__',
 '__rsub__',
 '__rtruediv__',
 '__rxor__',
 '__setattr__',
 '__setitem__',
 '__setstate__',
 '__sizeof__',
 '__str__',
 '__sub__',
 '__subclasshook__',
 '__truediv__',
 '__unicode__',
 '__weakref__',
 '__xor__',
 '_accessors',
 '_add_numeric_operations',
 '_add_series_only_operations',
 '_add_series_or_dataframe_operations',
 '_agg_by_level',
 '_agg_doc',
 '_aggregate',
 '_aggregate_multiple_funcs',
 '_align_frame',
 '_align_series',
 '_box_col_values',
 '_box_item_values',
 '_builtin_table',
 '_check_inplace_setting',
 '_check_is_chained_assignment_possible',
 '_check_label_or_level_ambiguity',
 '_check_percentile',
 '_check_setitem_copy',
 '_clear_item_cache',
 '_clip_with_one_bound',
 '_clip_with_scalar',
 '_combine_const',
 '_combine_frame',
 '_combine_match_columns',
 '_combine_match_index',
 '_compare_frame',
 '_consolidate',
 '_consolidate_inplace',
 '_construct_axes_dict',
 '_construct_axes_dict_for_slice',
 '_construct_axes_dict_from',
 '_construct_axes_from_arguments',
 '_constructor',
 '_constructor_expanddim',
 '_constructor_sliced',
 '_convert',
 '_count_level',
 '_create_indexer',
 '_cython_table',
 '_deprecations',
 '_dir_additions',
 '_dir_deletions',
 '_drop_axis',
 '_drop_labels_or_levels',
 '_ensure_valid_index',
 '_expand_axes',
 '_find_valid_index',
 '_from_arrays',
 '_from_axes',
 '_get_agg_axis',
 '_get_axis',
 '_get_axis_name',
 '_get_axis_number',
 '_get_axis_resolvers',
 '_get_block_manager_axis',
 '_get_bool_data',
 '_get_cacher',
 '_get_index_resolvers',
 '_get_item_cache',
 '_get_label_or_level_values',
 '_get_numeric_data',
 '_get_value',
 '_get_values',
 '_getitem_array',
 '_getitem_column',
 '_getitem_frame',
 '_getitem_multilevel',
 '_getitem_slice',
 '_gotitem',
 '_iget_item_cache',
 '_indexed_same',
 '_info_axis',
 '_info_axis_name',
 '_info_axis_number',
 '_info_repr',
 '_init_dict',
 '_init_mgr',
 '_init_ndarray',
 '_internal_names',
 '_internal_names_set',
 '_is_builtin_func',
 '_is_cached',
 '_is_copy',
 '_is_cython_func',
 '_is_datelike_mixed_type',
 '_is_label_or_level_reference',
 '_is_label_reference',
 '_is_level_reference',
 '_is_mixed_type',
 '_is_numeric_mixed_type',
 '_is_view',
 '_ix',
 '_ixs',
 '_join_compat',
 '_maybe_cache_changed',
 '_maybe_update_cacher',
 '_metadata',
 '_needs_reindex_multi',
 '_obj_with_exclusions',
 '_protect_consolidate',
 '_reduce',
 '_reindex_axes',
 '_reindex_axis',
 '_reindex_columns',
 '_reindex_index',
 '_reindex_multi',
 '_reindex_with_indexers',
 '_repr_data_resource_',
 '_repr_fits_horizontal_',
 '_repr_fits_vertical_',
 '_repr_html_',
 '_repr_latex_',
 '_reset_cache',
 '_reset_cacher',
 '_sanitize_column',
 '_selected_obj',
 '_selection',
 '_selection_list',
 '_selection_name',
 '_series',
 '_set_as_cached',
 '_set_axis',
 '_set_axis_name',
 '_set_is_copy',
 '_set_item',
 '_set_value',
 '_setitem_array',
 '_setitem_frame',
 '_setitem_slice',
 '_setup_axes',
 '_shallow_copy',
 '_slice',
 '_stat_axis',
 '_stat_axis_name',
 '_stat_axis_number',
 '_take',
 '_to_dict_of_blocks',
 '_try_aggregate_string_function',
 '_typ',
 '_unpickle_frame_compat',
 '_unpickle_matrix_compat',
 '_update_inplace',
 '_validate_dtype',
 '_values',
 '_where',
 '_xs',
 'abs',
 'add',
 'add_prefix',
 'add_suffix',
 'agg',
 'aggregate',
 'align',
 'all',
 'any',
 'append',
 'apply',
 'applymap',
 'as_matrix',
 'asfreq',
 'asof',
 'assign',
 'astype',
 'at',
 'at_time',
 'axes',
 'between_time',
 'bfill',
 'bool',
 'boxplot',
 'clip',
 'clip_lower',
 'clip_upper',
 'columns',
 'combine',
 'combine_first',
 'compound',
 'copy',
 'corr',
 'corrwith',
 'count',
 'cov',
 'cummax',
 'cummin',
 'cumprod',
 'cumsum',
 'describe',
 'diff',
 'div',
 'divide',
 'dot',
 'drop',
 'drop_duplicates',
 'dropna',
 'dtypes',
 'duplicated',
 'empty',
 'eq',
 'equals',
 'eval',
 'ewm',
 'expanding',
 'ffill',
 'fillna',
 'filter',
 'first',
 'first_valid_index',
 'floordiv',
 'from_dict',
 'from_records',
 'ftypes',
 'gdpPercap_1952',
 'gdpPercap_1957',
 'gdpPercap_1962',
 'gdpPercap_1967',
 'gdpPercap_1972',
 'gdpPercap_1977',
 'gdpPercap_1982',
 'gdpPercap_1987',
 'gdpPercap_1992',
 'gdpPercap_1997',
 'gdpPercap_2002',
 'gdpPercap_2007',
 'ge',
 'get',
 'get_dtype_counts',
 'get_ftype_counts',
 'get_values',
 'groupby',
 'gt',
 'head',
 'hist',
 'iat',
 'idxmax',
 'idxmin',
 'iloc',
 'index',
 'infer_objects',
 'info',
 'insert',
 'interpolate',
 'isin',
 'isna',
 'isnull',
 'items',
 'iteritems',
 'iterrows',
 'itertuples',
 'ix',
 'join',
 'keys',
 'kurt',
 'kurtosis',
 'last',
 'last_valid_index',
 'le',
 'loc',
 'lookup',
 'lt',
 'mad',
 'mask',
 'max',
 'mean',
 'median',
 'melt',
 'memory_usage',
 'merge',
 'min',
 'mod',
 'mode',
 'mul',
 'multiply',
 'ndim',
 'ne',
 'nlargest',
 'notna',
 'notnull',
 'nsmallest',
 'nunique',
 'pct_change',
 'pipe',
 'pivot',
 'pivot_table',
 'plot',
 'pop',
 'pow',
 'prod',
 'product',
 'quantile',
 'query',
 'radd',
 'rank',
 'rdiv',
 'reindex',
 'reindex_axis',
 'reindex_like',
 'rename',
 'rename_axis',
 'reorder_levels',
 'replace',
 'resample',
 'reset_index',
 'rfloordiv',
 'rmod',
 'rmul',
 'rolling',
 'round',
 'rpow',
 'rsub',
 'rtruediv',
 'sample',
 'select',
 'select_dtypes',
 'sem',
 'set_axis',
 'set_index',
 'shape',
 'shift',
 'size',
 'skew',
 'slice_shift',
 'sort_index',
 'sort_values',
 'squeeze',
 'stack',
 'std',
 'style',
 'sub',
 'subtract',
 'sum',
 'swapaxes',
 'swaplevel',
 'tail',
 'take',
 'to_clipboard',
 'to_csv',
 'to_dense',
 'to_dict',
 'to_excel',
 'to_feather',
 'to_gbq',
 'to_hdf',
 'to_html',
 'to_json',
 'to_latex',
 'to_msgpack',
 'to_panel',
 'to_parquet',
 'to_period',
 'to_pickle',
 'to_records',
 'to_sparse',
 'to_sql',
 'to_stata',
 'to_string',
 'to_timestamp',
 'to_xarray',
 'transform',
 'transpose',
 'truediv',
 'truncate',
 'tshift',
 'tz_convert',
 'tz_localize',
 'unstack',
 'update',
 'values',
 'var',
 'where',
 'xs']

In [19]:
help(europe.sort_values)


Help on method sort_values in module pandas.core.frame:

sort_values(by, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last') method of pandas.core.frame.DataFrame instance
    Sort by the values along either axis
    
    Parameters
    ----------
    by : str or list of str
        Name or list of names to sort by.
    
        - if `axis` is 0 or `'index'` then `by` may contain index
          levels and/or column labels
        - if `axis` is 1 or `'columns'` then `by` may contain column
          levels and/or index labels
    
        .. versionchanged:: 0.23.0
           Allow specifying index or column level names.
    axis : {0 or 'index', 1 or 'columns'}, default 0
         Axis to be sorted
    ascending : bool or list of bool, default True
         Sort ascending vs. descending. Specify list for multiple sort
         orders.  If this is a list of bools, must match the length of
         the by.
    inplace : bool, default False
         if True, perform operation in-place
    kind : {'quicksort', 'mergesort', 'heapsort'}, default 'quicksort'
         Choice of sorting algorithm. See also ndarray.np.sort for more
         information.  `mergesort` is the only stable algorithm. For
         DataFrames, this option is only applied when sorting on a single
         column or label.
    na_position : {'first', 'last'}, default 'last'
         `first` puts NaNs at the beginning, `last` puts NaNs at the end
    
    Returns
    -------
    sorted_obj : DataFrame
    
    Examples
    --------
    >>> df = pd.DataFrame({
    ...     'col1' : ['A', 'A', 'B', np.nan, 'D', 'C'],
    ...     'col2' : [2, 1, 9, 8, 7, 4],
    ...     'col3': [0, 1, 9, 4, 2, 3],
    ... })
    >>> df
        col1 col2 col3
    0   A    2    0
    1   A    1    1
    2   B    9    9
    3   NaN  8    4
    4   D    7    2
    5   C    4    3
    
    Sort by col1
    
    >>> df.sort_values(by=['col1'])
        col1 col2 col3
    0   A    2    0
    1   A    1    1
    2   B    9    9
    5   C    4    3
    4   D    7    2
    3   NaN  8    4
    
    Sort by multiple columns
    
    >>> df.sort_values(by=['col1', 'col2'])
        col1 col2 col3
    1   A    1    1
    0   A    2    0
    2   B    9    9
    5   C    4    3
    4   D    7    2
    3   NaN  8    4
    
    Sort Descending
    
    >>> df.sort_values(by='col1', ascending=False)
        col1 col2 col3
    4   D    7    2
    5   C    4    3
    2   B    9    9
    0   A    2    0
    1   A    1    1
    3   NaN  8    4
    
    Putting NAs first
    
    >>> df.sort_values(by='col1', ascending=False, na_position='first')
        col1 col2 col3
    3   NaN  8    4
    4   D    7    2
    5   C    4    3
    2   B    9    9
    0   A    2    0
    1   A    1    1


In [20]:
europe.sort_values('gdpPercap_2007', ascending=False)


Out[20]:
gdpPercap_1952 gdpPercap_1957 gdpPercap_1962 gdpPercap_1967 gdpPercap_1972 gdpPercap_1977 gdpPercap_1982 gdpPercap_1987 gdpPercap_1992 gdpPercap_1997 gdpPercap_2002 gdpPercap_2007
country
Norway 10095.421720 11653.973040 13450.401510 16361.876470 18965.055510 23311.349390 26298.635310 31540.974800 33965.661150 41283.164330 44683.975250 49357.190170
Ireland 5210.280328 5599.077872 6631.597314 7655.568963 9530.772896 11150.981130 12618.321410 13872.866520 17558.815550 24521.947130 34077.049390 40675.996350
Switzerland 14734.232750 17909.489730 20431.092700 22966.144320 27195.113040 26982.290520 28397.715120 30281.704590 31871.530300 32135.323010 34480.957710 37506.419070
Netherlands 8941.571858 11276.193440 12790.849560 15363.251360 18794.745670 21209.059200 21399.460460 23651.323610 26790.949610 30246.130630 33724.757780 36797.933320
Iceland 7267.688428 9244.001412 10350.159060 13319.895680 15798.063620 19654.962470 23269.607500 26923.206280 25144.392010 28061.099660 31163.201960 36180.789190
Austria 6137.076492 8842.598030 10750.721110 12834.602400 16661.625600 19749.422300 21597.083620 23687.826070 27042.018680 29095.920660 32417.607690 36126.492700
Denmark 9692.385245 11099.659350 13583.313510 15937.211230 18866.207210 20422.901500 21688.040480 25116.175810 26406.739850 29804.345670 32166.500060 35278.418740
Sweden 8527.844662 9911.878226 12329.441920 15258.296970 17832.024640 18855.725210 20667.381250 23586.929270 23880.016830 25266.594990 29341.630930 33859.748350
Belgium 8343.105127 9714.960623 10991.206760 13149.041190 16672.143560 19117.974480 20979.845890 22525.563080 25575.570690 27561.196630 30485.883750 33692.605080
Finland 6424.519071 7545.415386 9371.842561 10921.636260 14358.875900 15605.422830 18533.157610 21141.012230 20647.164990 23723.950200 28204.590570 33207.084400
United Kingdom 9979.508487 11283.177950 12477.177070 14142.850890 15895.116410 17428.748460 18232.424520 21664.787670 22705.092540 26074.531360 29478.999190 33203.261280
Germany 7144.114393 10187.826650 12902.462910 14745.625610 18016.180270 20512.921230 22031.532740 24639.185660 26505.303170 27788.884160 30035.801980 32170.374420
France 7029.809327 8662.834898 10560.485530 12999.917660 16107.191710 18292.635140 20293.897460 22066.442140 24703.796150 25889.784870 28926.032340 30470.016700
Spain 3834.034742 4564.802410 5693.843879 7993.512294 10638.751310 13236.921170 13926.169970 15764.983130 18603.064520 20445.298960 24835.471660 28821.063700
Italy 4931.404155 6248.656232 8243.582340 10022.401310 12269.273780 14255.984750 16537.483500 19207.234820 22013.644860 24675.024460 27968.098170 28569.719700
Greece 3530.690067 4916.299889 6017.190733 8513.097016 12724.829570 14195.524280 15268.420890 16120.528390 17541.496340 18747.698140 22514.254800 27538.411880
Slovenia 4215.041741 5862.276629 7402.303395 9405.489397 12383.486200 15277.030170 17866.721750 18678.534920 14214.716810 17161.107350 20660.019360 25768.257590
Czech Republic 6876.140250 8256.343918 10136.867130 11399.444890 13108.453600 14800.160620 15377.228550 16310.443400 14297.021220 16048.514240 17596.210220 22833.308510
Portugal 3068.319867 3774.571743 4727.954889 6361.517993 9022.247417 10172.485720 11753.842910 13039.308760 16207.266630 17641.031560 19970.907870 20509.647770
Slovak Republic 5074.659104 6093.262980 7481.107598 8412.902397 9674.167626 10922.664040 11348.545850 12037.267580 9498.467723 12126.230650 13638.778370 18678.314350
Hungary 5263.673816 6040.180011 7550.359877 9326.644670 10168.656110 11674.837370 12545.990660 12986.479980 10535.628550 11712.776800 14843.935560 18008.944440
Poland 4029.329699 4734.253019 5338.752143 6557.152776 8006.506993 9508.141454 8451.531004 9082.351172 7738.881247 10159.583680 12002.239080 15389.924680
Croatia 3119.236520 4338.231617 5477.890018 6960.297861 9164.090127 11305.385170 13221.821840 13822.583940 8447.794873 9875.604515 11628.388950 14619.222720
Romania 3144.613186 3943.370225 4734.997586 6470.866545 8011.414402 9356.397240 9605.314053 9696.273295 6598.409903 7346.547557 7885.360081 10808.475610
Bulgaria 2444.286648 3008.670727 4254.337839 5577.002800 6597.494398 7612.240438 8224.191647 8239.854824 6302.623438 5970.388760 7696.777725 10680.792820
Serbia 3581.459448 4981.090891 6289.629157 7991.707066 10522.067490 12980.669560 15181.092700 15870.878510 9325.068238 7914.320304 7236.075251 9786.534714
Montenegro 2647.585601 3682.259903 4649.593785 5907.850937 7778.414017 9595.929905 11222.587620 11732.510170 7003.339037 6465.613349 6557.194282 9253.896111
Turkey 1969.100980 2218.754257 2322.869908 2826.356387 3450.696380 4269.122326 4241.356344 5089.043686 5678.348271 6601.429915 6508.085718 8458.276384
Bosnia and Herzegovina 973.533195 1353.989176 1709.683679 2172.352423 2860.169750 3528.481305 4126.613157 4314.114757 2546.781445 4766.355904 6018.975239 7446.298803
Albania 1601.056136 1942.284244 2312.888958 2760.196931 3313.422188 3533.003910 3630.880722 3738.932735 2497.437901 3193.054604 4604.211737 5937.029526

In [21]:
europe['gdpPercap_2007']


Out[21]:
country
Albania                    5937.029526
Austria                   36126.492700
Belgium                   33692.605080
Bosnia and Herzegovina     7446.298803
Bulgaria                  10680.792820
Croatia                   14619.222720
Czech Republic            22833.308510
Denmark                   35278.418740
Finland                   33207.084400
France                    30470.016700
Germany                   32170.374420
Greece                    27538.411880
Hungary                   18008.944440
Iceland                   36180.789190
Ireland                   40675.996350
Italy                     28569.719700
Montenegro                 9253.896111
Netherlands               36797.933320
Norway                    49357.190170
Poland                    15389.924680
Portugal                  20509.647770
Romania                   10808.475610
Serbia                     9786.534714
Slovak Republic           18678.314350
Slovenia                  25768.257590
Spain                     28821.063700
Sweden                    33859.748350
Switzerland               37506.419070
Turkey                     8458.276384
United Kingdom            33203.261280
Name: gdpPercap_2007, dtype: float64

In [22]:
europe.gdpPercap_2007


Out[22]:
country
Albania                    5937.029526
Austria                   36126.492700
Belgium                   33692.605080
Bosnia and Herzegovina     7446.298803
Bulgaria                  10680.792820
Croatia                   14619.222720
Czech Republic            22833.308510
Denmark                   35278.418740
Finland                   33207.084400
France                    30470.016700
Germany                   32170.374420
Greece                    27538.411880
Hungary                   18008.944440
Iceland                   36180.789190
Ireland                   40675.996350
Italy                     28569.719700
Montenegro                 9253.896111
Netherlands               36797.933320
Norway                    49357.190170
Poland                    15389.924680
Portugal                  20509.647770
Romania                   10808.475610
Serbia                     9786.534714
Slovak Republic           18678.314350
Slovenia                  25768.257590
Spain                     28821.063700
Sweden                    33859.748350
Switzerland               37506.419070
Turkey                     8458.276384
United Kingdom            33203.261280
Name: gdpPercap_2007, dtype: float64

In [26]:
# loc include last index value
europe.loc['Belgium':'Bulgaria',:]


Out[26]:
gdpPercap_1952 gdpPercap_1957 gdpPercap_1962 gdpPercap_1967 gdpPercap_1972 gdpPercap_1977 gdpPercap_1982 gdpPercap_1987 gdpPercap_1992 gdpPercap_1997 gdpPercap_2002 gdpPercap_2007
country
Belgium 8343.105127 9714.960623 10991.206760 13149.041190 16672.143560 19117.974480 20979.845890 22525.563080 25575.570690 27561.196630 30485.883750 33692.605080
Bosnia and Herzegovina 973.533195 1353.989176 1709.683679 2172.352423 2860.169750 3528.481305 4126.613157 4314.114757 2546.781445 4766.355904 6018.975239 7446.298803
Bulgaria 2444.286648 3008.670727 4254.337839 5577.002800 6597.494398 7612.240438 8224.191647 8239.854824 6302.623438 5970.388760 7696.777725 10680.792820

In [27]:
europe.iloc[2:4,:]


Out[27]:
gdpPercap_1952 gdpPercap_1957 gdpPercap_1962 gdpPercap_1967 gdpPercap_1972 gdpPercap_1977 gdpPercap_1982 gdpPercap_1987 gdpPercap_1992 gdpPercap_1997 gdpPercap_2002 gdpPercap_2007
country
Belgium 8343.105127 9714.960623 10991.206760 13149.041190 16672.14356 19117.974480 20979.845890 22525.563080 25575.570690 27561.196630 30485.883750 33692.605080
Bosnia and Herzegovina 973.533195 1353.989176 1709.683679 2172.352423 2860.16975 3528.481305 4126.613157 4314.114757 2546.781445 4766.355904 6018.975239 7446.298803

In [29]:
europe.max()


Out[29]:
gdpPercap_1952    14734.23275
gdpPercap_1957    17909.48973
gdpPercap_1962    20431.09270
gdpPercap_1967    22966.14432
gdpPercap_1972    27195.11304
gdpPercap_1977    26982.29052
gdpPercap_1982    28397.71512
gdpPercap_1987    31540.97480
gdpPercap_1992    33965.66115
gdpPercap_1997    41283.16433
gdpPercap_2002    44683.97525
gdpPercap_2007    49357.19017
dtype: float64

In [30]:
europe.loc['Italy':'Poland', 'gdpPercap_1962':'gdpPercap_1972']


Out[30]:
gdpPercap_1962 gdpPercap_1967 gdpPercap_1972
country
Italy 8243.582340 10022.401310 12269.273780
Montenegro 4649.593785 5907.850937 7778.414017
Netherlands 12790.849560 15363.251360 18794.745670
Norway 13450.401510 16361.876470 18965.055510
Poland 5338.752143 6557.152776 8006.506993

In [28]:
europe.loc['Italy':'Poland', 'gdpPercap_1962':'gdpPercap_1972'].max()


Out[28]:
gdpPercap_1962    13450.40151
gdpPercap_1967    16361.87647
gdpPercap_1972    18965.05551
dtype: float64

In [31]:
europe.loc['Italy':'Poland', 'gdpPercap_1962':'gdpPercap_1972'].min()


Out[31]:
gdpPercap_1962    4649.593785
gdpPercap_1967    5907.850937
gdpPercap_1972    7778.414017
dtype: float64

In [32]:
# subset on condition
subset = europe.loc['Italy':'Poland', 'gdpPercap_1962':'gdpPercap_1972']
print('Subset:\n', subset)


Subset:
              gdpPercap_1962  gdpPercap_1967  gdpPercap_1972
country                                                    
Italy           8243.582340    10022.401310    12269.273780
Montenegro      4649.593785     5907.850937     7778.414017
Netherlands    12790.849560    15363.251360    18794.745670
Norway         13450.401510    16361.876470    18965.055510
Poland          5338.752143     6557.152776     8006.506993

In [33]:
print('Values greater than 10.000', subset > 10000)


Values greater than 10.000              gdpPercap_1962  gdpPercap_1967  gdpPercap_1972
country                                                    
Italy                 False            True            True
Montenegro            False           False           False
Netherlands            True            True            True
Norway                 True            True            True
Poland                False           False           False

In [35]:
mask = subset > 10000
print(subset[mask])


             gdpPercap_1962  gdpPercap_1967  gdpPercap_1972
country                                                    
Italy                   NaN     10022.40131     12269.27378
Montenegro              NaN             NaN             NaN
Netherlands     12790.84956     15363.25136     18794.74567
Norway          13450.40151     16361.87647     18965.05551
Poland                  NaN             NaN             NaN

In [36]:
print(subset[mask].describe())


       gdpPercap_1962  gdpPercap_1967  gdpPercap_1972
count        2.000000        3.000000        3.000000
mean     13120.625535    13915.843047    16676.358320
std        466.373656     3408.589070     3817.597015
min      12790.849560    10022.401310    12269.273780
25%      12955.737547    12692.826335    15532.009725
50%      13120.625535    15363.251360    18794.745670
75%      13285.513523    15862.563915    18879.900590
max      13450.401510    16361.876470    18965.055510

In [6]:
europe['gdpPercap_2007']['Serbia']


Out[6]:
9786.534714

In [7]:
europe.loc['Serbia', 'gdpPercap_2007']


Out[7]:
9786.534714

In [9]:
spain = europe.loc['Spain']

In [18]:
spain


Out[18]:
gdpPercap_1952     3834.034742
gdpPercap_1957     4564.802410
gdpPercap_1962     5693.843879
gdpPercap_1967     7993.512294
gdpPercap_1972    10638.751310
gdpPercap_1977    13236.921170
gdpPercap_1982    13926.169970
gdpPercap_1987    15764.983130
gdpPercap_1992    18603.064520
gdpPercap_1997    20445.298960
gdpPercap_2002    24835.471660
gdpPercap_2007    28821.063700
Name: Spain, dtype: float64

In [10]:
import matplotlib.pyplot as mp

In [13]:
help(mp.plot)


Help on function plot in module matplotlib.pyplot:

plot(*args, **kwargs)
    Plot y versus x as lines and/or markers.
    
    Call signatures::
    
        plot([x], y, [fmt], data=None, **kwargs)
        plot([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs)
    
    The coordinates of the points or line nodes are given by *x*, *y*.
    
    The optional parameter *fmt* is a convenient way for defining basic
    formatting like color, marker and linestyle. It's a shortcut string
    notation described in the *Notes* section below.
    
    >>> plot(x, y)        # plot x and y using default line style and color
    >>> plot(x, y, 'bo')  # plot x and y using blue circle markers
    >>> plot(y)           # plot y using x as index array 0..N-1
    >>> plot(y, 'r+')     # ditto, but with red plusses
    
    You can use `.Line2D` properties as keyword arguments for more
    control on the  appearance. Line properties and *fmt* can be mixed.
    The following two calls yield identical results:
    
    >>> plot(x, y, 'go--', linewidth=2, markersize=12)
    >>> plot(x, y, color='green', marker='o', linestyle='dashed',
            linewidth=2, markersize=12)
    
    When conflicting with *fmt*, keyword arguments take precedence.
    
    **Plotting labelled data**
    
    There's a convenient way for plotting objects with labelled data (i.e.
    data that can be accessed by index ``obj['y']``). Instead of giving
    the data in *x* and *y*, you can provide the object in the *data*
    parameter and just give the labels for *x* and *y*::
    
    >>> plot('xlabel', 'ylabel', data=obj)
    
    All indexable objects are supported. This could e.g. be a `dict`, a
    `pandas.DataFame` or a structured numpy array.
    
    
    **Plotting multiple sets of data**
    
    There are various ways to plot multiple sets of data.
    
    - The most straight forward way is just to call `plot` multiple times.
      Example:
    
      >>> plot(x1, y1, 'bo')
      >>> plot(x2, y2, 'go')
    
    - Alternatively, if your data is already a 2d array, you can pass it
      directly to *x*, *y*. A separate data set will be drawn for every
      column.
    
      Example: an array ``a`` where the first column represents the *x*
      values and the other columns are the *y* columns::
    
      >>> plot(a[0], a[1:])
    
    - The third way is to specify multiple sets of *[x]*, *y*, *[fmt]*
      groups::
    
      >>> plot(x1, y1, 'g^', x2, y2, 'g-')
    
      In this case, any additional keyword argument applies to all
      datasets. Also this syntax cannot be combined with the *data*
      parameter.
    
    By default, each line is assigned a different style specified by a
    'style cycle'. The *fmt* and line property parameters are only
    necessary if you want explicit deviations from these defaults.
    Alternatively, you can also change the style cycle using the
    'axes.prop_cycle' rcParam.
    
    Parameters
    ----------
    x, y : array-like or scalar
        The horizontal / vertical coordinates of the data points.
        *x* values are optional. If not given, they default to
        ``[0, ..., N-1]``.
    
        Commonly, these parameters are arrays of length N. However,
        scalars are supported as well (equivalent to an array with
        constant value).
    
        The parameters can also be 2-dimensional. Then, the columns
        represent separate data sets.
    
    fmt : str, optional
        A format string, e.g. 'ro' for red circles. See the *Notes*
        section for a full description of the format strings.
    
        Format strings are just an abbreviation for quickly setting
        basic line properties. All of these and more can also be
        controlled by keyword arguments.
    
    data : indexable object, optional
        An object with labelled data. If given, provide the label names to
        plot in *x* and *y*.
    
        .. note::
            Technically there's a slight ambiguity in calls where the
            second label is a valid *fmt*. `plot('n', 'o', data=obj)`
            could be `plt(x, y)` or `plt(y, fmt)`. In such cases,
            the former interpretation is chosen, but a warning is issued.
            You may suppress the warning by adding an empty format string
            `plot('n', 'o', '', data=obj)`.
    
    
    Other Parameters
    ----------------
    scalex, scaley : bool, optional, default: True
        These parameters determined if the view limits are adapted to
        the data limits. The values are passed on to `autoscale_view`.
    
    **kwargs : `.Line2D` properties, optional
        *kwargs* are used to specify properties like a line label (for
        auto legends), linewidth, antialiasing, marker face color.
        Example::
    
        >>> plot([1,2,3], [1,2,3], 'go-', label='line 1', linewidth=2)
        >>> plot([1,2,3], [1,4,9], 'rs',  label='line 2')
    
        If you make multiple lines with one plot command, the kwargs
        apply to all those lines.
    
        Here is a list of available `.Line2D` properties:
    
          agg_filter: a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array 
      alpha: float (0.0 transparent through 1.0 opaque) 
      animated: bool 
      antialiased or aa: bool 
      clip_box: a `.Bbox` instance 
      clip_on: bool 
      clip_path: [(`~matplotlib.path.Path`, `.Transform`) | `.Patch` | None] 
      color or c: any matplotlib color 
      contains: a callable function 
      dash_capstyle: ['butt' | 'round' | 'projecting'] 
      dash_joinstyle: ['miter' | 'round' | 'bevel'] 
      dashes: sequence of on/off ink in points 
      drawstyle: ['default' | 'steps' | 'steps-pre' | 'steps-mid' | 'steps-post'] 
      figure: a `.Figure` instance 
      fillstyle: ['full' | 'left' | 'right' | 'bottom' | 'top' | 'none'] 
      gid: an id string 
      label: object 
      linestyle or ls: ['solid' | 'dashed', 'dashdot', 'dotted' | (offset, on-off-dash-seq) | ``'-'`` | ``'--'`` | ``'-.'`` | ``':'`` | ``'None'`` | ``' '`` | ``''``]
      linewidth or lw: float value in points 
      marker: :mod:`A valid marker style <matplotlib.markers>`
      markeredgecolor or mec: any matplotlib color 
      markeredgewidth or mew: float value in points 
      markerfacecolor or mfc: any matplotlib color 
      markerfacecoloralt or mfcalt: any matplotlib color 
      markersize or ms: float 
      markevery: [None | int | length-2 tuple of int | slice | list/array of int | float | length-2 tuple of float]
      path_effects: `.AbstractPathEffect` 
      picker: float distance in points or callable pick function ``fn(artist, event)`` 
      pickradius: float distance in points
      rasterized: bool or None 
      sketch_params: (scale: float, length: float, randomness: float) 
      snap: bool or None 
      solid_capstyle: ['butt' | 'round' |  'projecting'] 
      solid_joinstyle: ['miter' | 'round' | 'bevel'] 
      transform: a :class:`matplotlib.transforms.Transform` instance 
      url: a url string 
      visible: bool 
      xdata: 1D array 
      ydata: 1D array 
      zorder: float 
    
    Returns
    -------
    lines
        A list of `.Line2D` objects representing the plotted data.
    
    
    See Also
    --------
    scatter : XY scatter plot with markers of variing size and/or color (
        sometimes also called bubble chart).
    
    
    Notes
    -----
    **Format Strings**
    
    A format string consists of a part for color, marker and line::
    
        fmt = '[color][marker][line]'
    
    Each of them is optional. If not provided, the value from the style
    cycle is used. Exception: If ``line`` is given, but no ``marker``,
    the data will be a line without markers.
    
    **Colors**
    
    The following color abbreviations are supported:
    
    =============    ===============================
    character        color
    =============    ===============================
    ``'b'``          blue
    ``'g'``          green
    ``'r'``          red
    ``'c'``          cyan
    ``'m'``          magenta
    ``'y'``          yellow
    ``'k'``          black
    ``'w'``          white
    =============    ===============================
    
    If the color is the only part of the format string, you can
    additionally use any  `matplotlib.colors` spec, e.g. full names
    (``'green'``) or hex strings (``'#008000'``).
    
    **Markers**
    
    =============    ===============================
    character        description
    =============    ===============================
    ``'.'``          point marker
    ``','``          pixel marker
    ``'o'``          circle marker
    ``'v'``          triangle_down marker
    ``'^'``          triangle_up marker
    ``'<'``          triangle_left marker
    ``'>'``          triangle_right marker
    ``'1'``          tri_down marker
    ``'2'``          tri_up marker
    ``'3'``          tri_left marker
    ``'4'``          tri_right marker
    ``'s'``          square marker
    ``'p'``          pentagon marker
    ``'*'``          star marker
    ``'h'``          hexagon1 marker
    ``'H'``          hexagon2 marker
    ``'+'``          plus marker
    ``'x'``          x marker
    ``'D'``          diamond marker
    ``'d'``          thin_diamond marker
    ``'|'``          vline marker
    ``'_'``          hline marker
    =============    ===============================
    
    **Line Styles**
    
    =============    ===============================
    character        description
    =============    ===============================
    ``'-'``          solid line style
    ``'--'``         dashed line style
    ``'-.'``         dash-dot line style
    ``':'``          dotted line style
    =============    ===============================
    
    Example format strings::
    
        'b'    # blue markers with default shape
        'ro'   # red circles
        'g-'   # green solid line
        '--'   # dashed line with default color
        'k^:'  # black triangle_up markers connected by a dotted line
    
    .. note::
        In addition to the above described arguments, this function can take a
        **data** keyword argument. If such a **data** argument is given, the
        following arguments are replaced by **data[<arg>]**:
    
        * All arguments with the following names: 'x', 'y'.


In [15]:
spain.values


Out[15]:
array([ 3834.034742,  4564.80241 ,  5693.843879,  7993.512294,
       10638.75131 , 13236.92117 , 13926.16997 , 15764.98313 ,
       18603.06452 , 20445.29896 , 24835.47166 , 28821.0637  ])

In [14]:
spain.index


Out[14]:
Index(['gdpPercap_1952', 'gdpPercap_1957', 'gdpPercap_1962', 'gdpPercap_1967',
       'gdpPercap_1972', 'gdpPercap_1977', 'gdpPercap_1982', 'gdpPercap_1987',
       'gdpPercap_1992', 'gdpPercap_1997', 'gdpPercap_2002', 'gdpPercap_2007'],
      dtype='object')

In [53]:
years = [int(x.replace('gdpPercap_', '')) for x in spain.index]

In [54]:
years


Out[54]:
[1952, 1957, 1962, 1967, 1972, 1977, 1982, 1987, 1992, 1997, 2002, 2007]

In [55]:
mp.plot(spain_years, spain.values)


Out[55]:
[<matplotlib.lines.Line2D at 0x117590ba8>]

In [57]:
mp.plot(years, europe.loc['Germany'].values)


Out[57]:
[<matplotlib.lines.Line2D at 0x1176499b0>]

In [34]:
print(europe.iloc[0:2, 0:2])


         gdpPercap_1952  gdpPercap_1957
country                                
Albania     1601.056136     1942.284244
Austria     6137.076492     8842.598030

In [35]:
print(europe.loc['Albania':'Belgium', 'gdpPercap_1952':'gdpPercap_1962'])


         gdpPercap_1952  gdpPercap_1957  gdpPercap_1962
country                                                
Albania     1601.056136     1942.284244     2312.888958
Austria     6137.076492     8842.598030    10750.721110
Belgium     8343.105127     9714.960623    10991.206760

In [42]:
first = pd.read_csv('data/gapminder_all.csv', index_col='country')

In [43]:
second = first[first['continent'] == 'Americas']

In [44]:
second


Out[44]:
continent gdpPercap_1952 gdpPercap_1957 gdpPercap_1962 gdpPercap_1967 gdpPercap_1972 gdpPercap_1977 gdpPercap_1982 gdpPercap_1987 gdpPercap_1992 ... pop_1962 pop_1967 pop_1972 pop_1977 pop_1982 pop_1987 pop_1992 pop_1997 pop_2002 pop_2007
country
Argentina Americas 5911.315053 6856.856212 7133.166023 8052.953021 9443.038526 10079.026740 8997.897412 9139.671389 9308.418710 ... 21283783.0 22934225.0 24779799.0 26983828.0 29341374.0 31620918.0 33958947.0 36203463.0 38331121 40301927
Bolivia Americas 2677.326347 2127.686326 2180.972546 2586.886053 2980.331339 3548.097832 3156.510452 2753.691490 2961.699694 ... 3593918.0 4040665.0 4565872.0 5079716.0 5642224.0 6156369.0 6893451.0 7693188.0 8445134 9119152
Brazil Americas 2108.944355 2487.365989 3336.585802 3429.864357 4985.711467 6660.118654 7030.835878 7807.095818 6950.283021 ... 76039390.0 88049823.0 100840058.0 114313951.0 128962939.0 142938076.0 155975974.0 168546719.0 179914212 190010647
Canada Americas 11367.161120 12489.950060 13462.485550 16076.588030 18970.570860 22090.883060 22898.792140 26626.515030 26342.884260 ... 18985849.0 20819767.0 22284500.0 23796400.0 25201900.0 26549700.0 28523502.0 30305843.0 31902268 33390141
Chile Americas 3939.978789 4315.622723 4519.094331 5106.654313 5494.024437 4756.763836 5095.665738 5547.063754 7596.125964 ... 7961258.0 8858908.0 9717524.0 10599793.0 11487112.0 12463354.0 13572994.0 14599929.0 15497046 16284741
Colombia Americas 2144.115096 2323.805581 2492.351109 2678.729839 3264.660041 3815.807870 4397.575659 4903.219100 5444.648617 ... 17009885.0 19764027.0 22542890.0 25094412.0 27764644.0 30964245.0 34202721.0 37657830.0 41008227 44227550
Costa Rica Americas 2627.009471 2990.010802 3460.937025 4161.727834 5118.146939 5926.876967 5262.734751 5629.915318 6160.416317 ... 1345187.0 1588717.0 1834796.0 2108457.0 2424367.0 2799811.0 3173216.0 3518107.0 3834934 4133884
Cuba Americas 5586.538780 6092.174359 5180.755910 5690.268015 5305.445256 6380.494966 7316.918107 7532.924763 5592.843963 ... 7254373.0 8139332.0 8831348.0 9537988.0 9789224.0 10239839.0 10723260.0 10983007.0 11226999 11416987
Dominican Republic Americas 1397.717137 1544.402995 1662.137359 1653.723003 2189.874499 2681.988900 2861.092386 2899.842175 3044.214214 ... 3453434.0 4049146.0 4671329.0 5302800.0 5968349.0 6655297.0 7351181.0 7992357.0 8650322 9319622
Ecuador Americas 3522.110717 3780.546651 4086.114078 4579.074215 5280.994710 6679.623260 7213.791267 6481.776993 7103.702595 ... 4681707.0 5432424.0 6298651.0 7278866.0 8365850.0 9545158.0 10748394.0 11911819.0 12921234 13755680
El Salvador Americas 3048.302900 3421.523218 3776.803627 4358.595393 4520.246008 5138.922374 4098.344175 4140.442097 4444.231700 ... 2747687.0 3232927.0 3790903.0 4282586.0 4474873.0 4842194.0 5274649.0 5783439.0 6353681 6939688
Guatemala Americas 2428.237769 2617.155967 2750.364446 3242.531147 4031.408271 4879.992748 4820.494790 4246.485974 4439.450840 ... 4208858.0 4690773.0 5149581.0 5703430.0 6395630.0 7326406.0 8486949.0 9803875.0 11178650 12572928
Haiti Americas 1840.366939 1726.887882 1796.589032 1452.057666 1654.456946 1874.298931 2011.159549 1823.015995 1456.309517 ... 3880130.0 4318137.0 4698301.0 4908554.0 5198399.0 5756203.0 6326682.0 6913545.0 7607651 8502814
Honduras Americas 2194.926204 2220.487682 2291.156835 2538.269358 2529.842345 3203.208066 3121.760794 3023.096699 3081.694603 ... 2090162.0 2500689.0 2965146.0 3055235.0 3669448.0 4372203.0 5077347.0 5867957.0 6677328 7483763
Jamaica Americas 2898.530881 4756.525781 5246.107524 6124.703451 7433.889293 6650.195573 6068.051350 6351.237495 7404.923685 ... 1665128.0 1861096.0 1997616.0 2156814.0 2298309.0 2326606.0 2378618.0 2531311.0 2664659 2780132
Mexico Americas 3478.125529 4131.546641 4581.609385 5754.733883 6809.406690 7674.929108 9611.147541 8688.156003 9472.384295 ... 41121485.0 47995559.0 55984294.0 63759976.0 71640904.0 80122492.0 88111030.0 95895146.0 102479927 108700891
Nicaragua Americas 3112.363948 3457.415947 3634.364406 4643.393534 4688.593267 5486.371089 3470.338156 2955.984375 2170.151724 ... 1590597.0 1865490.0 2182908.0 2554598.0 2979423.0 3344353.0 4017939.0 4609572.0 5146848 5675356
Panama Americas 2480.380334 2961.800905 3536.540301 4421.009084 5364.249663 5351.912144 7009.601598 7034.779161 6618.743050 ... 1215725.0 1405486.0 1616384.0 1839782.0 2036305.0 2253639.0 2484997.0 2734531.0 2990875 3242173
Paraguay Americas 1952.308701 2046.154706 2148.027146 2299.376311 2523.337977 3248.373311 4258.503604 3998.875695 4196.411078 ... 2009813.0 2287985.0 2614104.0 2984494.0 3366439.0 3886512.0 4483945.0 5154123.0 5884491 6667147
Peru Americas 3758.523437 4245.256698 4957.037982 5788.093330 5937.827283 6281.290855 6434.501797 6360.943444 4446.380924 ... 10516500.0 12132200.0 13954700.0 15990099.0 18125129.0 20195924.0 22430449.0 24748122.0 26769436 28674757
Puerto Rico Americas 3081.959785 3907.156189 5108.344630 6929.277714 9123.041742 9770.524921 10330.989150 12281.341910 14641.587110 ... 2448046.0 2648961.0 2847132.0 3080828.0 3279001.0 3444468.0 3585176.0 3759430.0 3859606 3942491
Trinidad and Tobago Americas 3023.271928 4100.393400 4997.523971 5621.368472 6619.551419 7899.554209 9119.528607 7388.597823 7370.990932 ... 887498.0 960155.0 975199.0 1039009.0 1116479.0 1191336.0 1183669.0 1138101.0 1101832 1056608
United States Americas 13990.482080 14847.127120 16173.145860 19530.365570 21806.035940 24072.632130 25009.559140 29884.350410 32003.932240 ... 186538000.0 198712000.0 209896000.0 220239000.0 232187835.0 242803533.0 256894189.0 272911760.0 287675526 301139947
Uruguay Americas 5716.766744 6150.772969 5603.357717 5444.619620 5703.408898 6504.339663 6920.223051 7452.398969 8137.004775 ... 2598466.0 2748579.0 2829526.0 2873520.0 2953997.0 3045153.0 3149262.0 3262838.0 3363085 3447496
Venezuela Americas 7689.799761 9802.466526 8422.974165 9541.474188 10505.259660 13143.950950 11152.410110 9883.584648 10733.926310 ... 8143375.0 9709552.0 11515649.0 13503563.0 15620766.0 17910182.0 20265563.0 22374398.0 24287670 26084662

25 rows × 37 columns


In [45]:
third = second.drop('Puerto Rico')

In [46]:
fourth = third.drop('continent', axis=1)

In [47]:
fourth


Out[47]:
gdpPercap_1952 gdpPercap_1957 gdpPercap_1962 gdpPercap_1967 gdpPercap_1972 gdpPercap_1977 gdpPercap_1982 gdpPercap_1987 gdpPercap_1992 gdpPercap_1997 ... pop_1962 pop_1967 pop_1972 pop_1977 pop_1982 pop_1987 pop_1992 pop_1997 pop_2002 pop_2007
country
Argentina 5911.315053 6856.856212 7133.166023 8052.953021 9443.038526 10079.026740 8997.897412 9139.671389 9308.418710 10967.281950 ... 21283783.0 22934225.0 24779799.0 26983828.0 29341374.0 31620918.0 33958947.0 36203463.0 38331121 40301927
Bolivia 2677.326347 2127.686326 2180.972546 2586.886053 2980.331339 3548.097832 3156.510452 2753.691490 2961.699694 3326.143191 ... 3593918.0 4040665.0 4565872.0 5079716.0 5642224.0 6156369.0 6893451.0 7693188.0 8445134 9119152
Brazil 2108.944355 2487.365989 3336.585802 3429.864357 4985.711467 6660.118654 7030.835878 7807.095818 6950.283021 7957.980824 ... 76039390.0 88049823.0 100840058.0 114313951.0 128962939.0 142938076.0 155975974.0 168546719.0 179914212 190010647
Canada 11367.161120 12489.950060 13462.485550 16076.588030 18970.570860 22090.883060 22898.792140 26626.515030 26342.884260 28954.925890 ... 18985849.0 20819767.0 22284500.0 23796400.0 25201900.0 26549700.0 28523502.0 30305843.0 31902268 33390141
Chile 3939.978789 4315.622723 4519.094331 5106.654313 5494.024437 4756.763836 5095.665738 5547.063754 7596.125964 10118.053180 ... 7961258.0 8858908.0 9717524.0 10599793.0 11487112.0 12463354.0 13572994.0 14599929.0 15497046 16284741
Colombia 2144.115096 2323.805581 2492.351109 2678.729839 3264.660041 3815.807870 4397.575659 4903.219100 5444.648617 6117.361746 ... 17009885.0 19764027.0 22542890.0 25094412.0 27764644.0 30964245.0 34202721.0 37657830.0 41008227 44227550
Costa Rica 2627.009471 2990.010802 3460.937025 4161.727834 5118.146939 5926.876967 5262.734751 5629.915318 6160.416317 6677.045314 ... 1345187.0 1588717.0 1834796.0 2108457.0 2424367.0 2799811.0 3173216.0 3518107.0 3834934 4133884
Cuba 5586.538780 6092.174359 5180.755910 5690.268015 5305.445256 6380.494966 7316.918107 7532.924763 5592.843963 5431.990415 ... 7254373.0 8139332.0 8831348.0 9537988.0 9789224.0 10239839.0 10723260.0 10983007.0 11226999 11416987
Dominican Republic 1397.717137 1544.402995 1662.137359 1653.723003 2189.874499 2681.988900 2861.092386 2899.842175 3044.214214 3614.101285 ... 3453434.0 4049146.0 4671329.0 5302800.0 5968349.0 6655297.0 7351181.0 7992357.0 8650322 9319622
Ecuador 3522.110717 3780.546651 4086.114078 4579.074215 5280.994710 6679.623260 7213.791267 6481.776993 7103.702595 7429.455877 ... 4681707.0 5432424.0 6298651.0 7278866.0 8365850.0 9545158.0 10748394.0 11911819.0 12921234 13755680
El Salvador 3048.302900 3421.523218 3776.803627 4358.595393 4520.246008 5138.922374 4098.344175 4140.442097 4444.231700 5154.825496 ... 2747687.0 3232927.0 3790903.0 4282586.0 4474873.0 4842194.0 5274649.0 5783439.0 6353681 6939688
Guatemala 2428.237769 2617.155967 2750.364446 3242.531147 4031.408271 4879.992748 4820.494790 4246.485974 4439.450840 4684.313807 ... 4208858.0 4690773.0 5149581.0 5703430.0 6395630.0 7326406.0 8486949.0 9803875.0 11178650 12572928
Haiti 1840.366939 1726.887882 1796.589032 1452.057666 1654.456946 1874.298931 2011.159549 1823.015995 1456.309517 1341.726931 ... 3880130.0 4318137.0 4698301.0 4908554.0 5198399.0 5756203.0 6326682.0 6913545.0 7607651 8502814
Honduras 2194.926204 2220.487682 2291.156835 2538.269358 2529.842345 3203.208066 3121.760794 3023.096699 3081.694603 3160.454906 ... 2090162.0 2500689.0 2965146.0 3055235.0 3669448.0 4372203.0 5077347.0 5867957.0 6677328 7483763
Jamaica 2898.530881 4756.525781 5246.107524 6124.703451 7433.889293 6650.195573 6068.051350 6351.237495 7404.923685 7121.924704 ... 1665128.0 1861096.0 1997616.0 2156814.0 2298309.0 2326606.0 2378618.0 2531311.0 2664659 2780132
Mexico 3478.125529 4131.546641 4581.609385 5754.733883 6809.406690 7674.929108 9611.147541 8688.156003 9472.384295 9767.297530 ... 41121485.0 47995559.0 55984294.0 63759976.0 71640904.0 80122492.0 88111030.0 95895146.0 102479927 108700891
Nicaragua 3112.363948 3457.415947 3634.364406 4643.393534 4688.593267 5486.371089 3470.338156 2955.984375 2170.151724 2253.023004 ... 1590597.0 1865490.0 2182908.0 2554598.0 2979423.0 3344353.0 4017939.0 4609572.0 5146848 5675356
Panama 2480.380334 2961.800905 3536.540301 4421.009084 5364.249663 5351.912144 7009.601598 7034.779161 6618.743050 7113.692252 ... 1215725.0 1405486.0 1616384.0 1839782.0 2036305.0 2253639.0 2484997.0 2734531.0 2990875 3242173
Paraguay 1952.308701 2046.154706 2148.027146 2299.376311 2523.337977 3248.373311 4258.503604 3998.875695 4196.411078 4247.400261 ... 2009813.0 2287985.0 2614104.0 2984494.0 3366439.0 3886512.0 4483945.0 5154123.0 5884491 6667147
Peru 3758.523437 4245.256698 4957.037982 5788.093330 5937.827283 6281.290855 6434.501797 6360.943444 4446.380924 5838.347657 ... 10516500.0 12132200.0 13954700.0 15990099.0 18125129.0 20195924.0 22430449.0 24748122.0 26769436 28674757
Trinidad and Tobago 3023.271928 4100.393400 4997.523971 5621.368472 6619.551419 7899.554209 9119.528607 7388.597823 7370.990932 8792.573126 ... 887498.0 960155.0 975199.0 1039009.0 1116479.0 1191336.0 1183669.0 1138101.0 1101832 1056608
United States 13990.482080 14847.127120 16173.145860 19530.365570 21806.035940 24072.632130 25009.559140 29884.350410 32003.932240 35767.433030 ... 186538000.0 198712000.0 209896000.0 220239000.0 232187835.0 242803533.0 256894189.0 272911760.0 287675526 301139947
Uruguay 5716.766744 6150.772969 5603.357717 5444.619620 5703.408898 6504.339663 6920.223051 7452.398969 8137.004775 9230.240708 ... 2598466.0 2748579.0 2829526.0 2873520.0 2953997.0 3045153.0 3149262.0 3262838.0 3363085 3447496
Venezuela 7689.799761 9802.466526 8422.974165 9541.474188 10505.259660 13143.950950 11152.410110 9883.584648 10733.926310 10165.495180 ... 8143375.0 9709552.0 11515649.0 13503563.0 15620766.0 17910182.0 20265563.0 22374398.0 24287670 26084662

24 rows × 36 columns


In [48]:
fourth.to_csv('data/all.csv')

In [49]:
fourth.columns


Out[49]:
Index(['gdpPercap_1952', 'gdpPercap_1957', 'gdpPercap_1962', 'gdpPercap_1967',
       'gdpPercap_1972', 'gdpPercap_1977', 'gdpPercap_1982', 'gdpPercap_1987',
       'gdpPercap_1992', 'gdpPercap_1997', 'gdpPercap_2002', 'gdpPercap_2007',
       'lifeExp_1952', 'lifeExp_1957', 'lifeExp_1962', 'lifeExp_1967',
       'lifeExp_1972', 'lifeExp_1977', 'lifeExp_1982', 'lifeExp_1987',
       'lifeExp_1992', 'lifeExp_1997', 'lifeExp_2002', 'lifeExp_2007',
       'pop_1952', 'pop_1957', 'pop_1962', 'pop_1967', 'pop_1972', 'pop_1977',
       'pop_1982', 'pop_1987', 'pop_1992', 'pop_1997', 'pop_2002', 'pop_2007'],
      dtype='object')

In [52]:
fourth.loc['Venezuela', 'pop_1952': 'pop_2007']


Out[52]:
pop_1952     5439568.0
pop_1957     6702668.0
pop_1962     8143375.0
pop_1967     9709552.0
pop_1972    11515649.0
pop_1977    13503563.0
pop_1982    15620766.0
pop_1987    17910182.0
pop_1992    20265563.0
pop_1997    22374398.0
pop_2002    24287670.0
pop_2007    26084662.0
Name: Venezuela, dtype: float64

In [58]:
mp.plot(years, fourth.loc['Venezuela', 'pop_1952': 'pop_2007'].values)


Out[58]:
[<matplotlib.lines.Line2D at 0x10580f2b0>]

In [59]:
mp.plot(years, fourth.loc['Venezuela', 'lifeExp_1952': 'lifeExp_2007'].values)


Out[59]:
[<matplotlib.lines.Line2D at 0x1177f4a58>]

In [61]:
mp.plot(years, fourth.loc['Venezuela', 'gdpPercap_1952': 'gdpPercap_2007'].values)


Out[61]:
[<matplotlib.lines.Line2D at 0x117ae4d68>]

In [64]:
europe


Out[64]:
gdpPercap_1952 gdpPercap_1957 gdpPercap_1962 gdpPercap_1967 gdpPercap_1972 gdpPercap_1977 gdpPercap_1982 gdpPercap_1987 gdpPercap_1992 gdpPercap_1997 gdpPercap_2002 gdpPercap_2007
country
Albania 1601.056136 1942.284244 2312.888958 2760.196931 3313.422188 3533.003910 3630.880722 3738.932735 2497.437901 3193.054604 4604.211737 5937.029526
Austria 6137.076492 8842.598030 10750.721110 12834.602400 16661.625600 19749.422300 21597.083620 23687.826070 27042.018680 29095.920660 32417.607690 36126.492700
Belgium 8343.105127 9714.960623 10991.206760 13149.041190 16672.143560 19117.974480 20979.845890 22525.563080 25575.570690 27561.196630 30485.883750 33692.605080
Bosnia and Herzegovina 973.533195 1353.989176 1709.683679 2172.352423 2860.169750 3528.481305 4126.613157 4314.114757 2546.781445 4766.355904 6018.975239 7446.298803
Bulgaria 2444.286648 3008.670727 4254.337839 5577.002800 6597.494398 7612.240438 8224.191647 8239.854824 6302.623438 5970.388760 7696.777725 10680.792820
Croatia 3119.236520 4338.231617 5477.890018 6960.297861 9164.090127 11305.385170 13221.821840 13822.583940 8447.794873 9875.604515 11628.388950 14619.222720
Czech Republic 6876.140250 8256.343918 10136.867130 11399.444890 13108.453600 14800.160620 15377.228550 16310.443400 14297.021220 16048.514240 17596.210220 22833.308510
Denmark 9692.385245 11099.659350 13583.313510 15937.211230 18866.207210 20422.901500 21688.040480 25116.175810 26406.739850 29804.345670 32166.500060 35278.418740
Finland 6424.519071 7545.415386 9371.842561 10921.636260 14358.875900 15605.422830 18533.157610 21141.012230 20647.164990 23723.950200 28204.590570 33207.084400
France 7029.809327 8662.834898 10560.485530 12999.917660 16107.191710 18292.635140 20293.897460 22066.442140 24703.796150 25889.784870 28926.032340 30470.016700
Germany 7144.114393 10187.826650 12902.462910 14745.625610 18016.180270 20512.921230 22031.532740 24639.185660 26505.303170 27788.884160 30035.801980 32170.374420
Greece 3530.690067 4916.299889 6017.190733 8513.097016 12724.829570 14195.524280 15268.420890 16120.528390 17541.496340 18747.698140 22514.254800 27538.411880
Hungary 5263.673816 6040.180011 7550.359877 9326.644670 10168.656110 11674.837370 12545.990660 12986.479980 10535.628550 11712.776800 14843.935560 18008.944440
Iceland 7267.688428 9244.001412 10350.159060 13319.895680 15798.063620 19654.962470 23269.607500 26923.206280 25144.392010 28061.099660 31163.201960 36180.789190
Ireland 5210.280328 5599.077872 6631.597314 7655.568963 9530.772896 11150.981130 12618.321410 13872.866520 17558.815550 24521.947130 34077.049390 40675.996350
Italy 4931.404155 6248.656232 8243.582340 10022.401310 12269.273780 14255.984750 16537.483500 19207.234820 22013.644860 24675.024460 27968.098170 28569.719700
Montenegro 2647.585601 3682.259903 4649.593785 5907.850937 7778.414017 9595.929905 11222.587620 11732.510170 7003.339037 6465.613349 6557.194282 9253.896111
Netherlands 8941.571858 11276.193440 12790.849560 15363.251360 18794.745670 21209.059200 21399.460460 23651.323610 26790.949610 30246.130630 33724.757780 36797.933320
Norway 10095.421720 11653.973040 13450.401510 16361.876470 18965.055510 23311.349390 26298.635310 31540.974800 33965.661150 41283.164330 44683.975250 49357.190170
Poland 4029.329699 4734.253019 5338.752143 6557.152776 8006.506993 9508.141454 8451.531004 9082.351172 7738.881247 10159.583680 12002.239080 15389.924680
Portugal 3068.319867 3774.571743 4727.954889 6361.517993 9022.247417 10172.485720 11753.842910 13039.308760 16207.266630 17641.031560 19970.907870 20509.647770
Romania 3144.613186 3943.370225 4734.997586 6470.866545 8011.414402 9356.397240 9605.314053 9696.273295 6598.409903 7346.547557 7885.360081 10808.475610
Serbia 3581.459448 4981.090891 6289.629157 7991.707066 10522.067490 12980.669560 15181.092700 15870.878510 9325.068238 7914.320304 7236.075251 9786.534714
Slovak Republic 5074.659104 6093.262980 7481.107598 8412.902397 9674.167626 10922.664040 11348.545850 12037.267580 9498.467723 12126.230650 13638.778370 18678.314350
Slovenia 4215.041741 5862.276629 7402.303395 9405.489397 12383.486200 15277.030170 17866.721750 18678.534920 14214.716810 17161.107350 20660.019360 25768.257590
Spain 3834.034742 4564.802410 5693.843879 7993.512294 10638.751310 13236.921170 13926.169970 15764.983130 18603.064520 20445.298960 24835.471660 28821.063700
Sweden 8527.844662 9911.878226 12329.441920 15258.296970 17832.024640 18855.725210 20667.381250 23586.929270 23880.016830 25266.594990 29341.630930 33859.748350
Switzerland 14734.232750 17909.489730 20431.092700 22966.144320 27195.113040 26982.290520 28397.715120 30281.704590 31871.530300 32135.323010 34480.957710 37506.419070
Turkey 1969.100980 2218.754257 2322.869908 2826.356387 3450.696380 4269.122326 4241.356344 5089.043686 5678.348271 6601.429915 6508.085718 8458.276384
United Kingdom 9979.508487 11283.177950 12477.177070 14142.850890 15895.116410 17428.748460 18232.424520 21664.787670 22705.092540 26074.531360 29478.999190 33203.261280

In [66]:
'''
For each column in data, idxmin will return the index value corresponding to each column’s minimum
idxmax will do accordingly the same for each column’s maximum value.

You can use these functions whenever you want to get the row index 
of the minimum/maximum value and not the actual minimum/maximum value.
'''

print(europe.idxmin())
print(europe.idxmax())


gdpPercap_1952    Bosnia and Herzegovina
gdpPercap_1957    Bosnia and Herzegovina
gdpPercap_1962    Bosnia and Herzegovina
gdpPercap_1967    Bosnia and Herzegovina
gdpPercap_1972    Bosnia and Herzegovina
gdpPercap_1977    Bosnia and Herzegovina
gdpPercap_1982                   Albania
gdpPercap_1987                   Albania
gdpPercap_1992                   Albania
gdpPercap_1997                   Albania
gdpPercap_2002                   Albania
gdpPercap_2007                   Albania
dtype: object
gdpPercap_1952    Switzerland
gdpPercap_1957    Switzerland
gdpPercap_1962    Switzerland
gdpPercap_1967    Switzerland
gdpPercap_1972    Switzerland
gdpPercap_1977    Switzerland
gdpPercap_1982    Switzerland
gdpPercap_1987         Norway
gdpPercap_1992         Norway
gdpPercap_1997         Norway
gdpPercap_2002         Norway
gdpPercap_2007         Norway
dtype: object

In [81]:
help(europe.idxmax)


Help on method idxmax in module pandas.core.frame:

idxmax(axis=0, skipna=True) method of pandas.core.frame.DataFrame instance
    Return index of first occurrence of maximum over requested axis.
    NA/null values are excluded.
    
    Parameters
    ----------
    axis : {0 or 'index', 1 or 'columns'}, default 0
        0 or 'index' for row-wise, 1 or 'columns' for column-wise
    skipna : boolean, default True
        Exclude NA/null values. If an entire row/column is NA, the result
        will be NA.
    
    Raises
    ------
    ValueError
        * If the row/column is empty
    
    Returns
    -------
    idxmax : Series
    
    Notes
    -----
    This method is the DataFrame version of ``ndarray.argmax``.
    
    See Also
    --------
    Series.idxmax


In [69]:
'''
Assume Pandas has been imported and the Gapminder GDP data for Europe has been loaded.
Write an expression to select each of the following:

1.- GDP per capita for all countries in 1982.
2.- GDP per capita for Denmark for all years.
3.- GDP per capita for all countries for years after 1985.
4.- GDP per capita for each country in 2007 as a multiple of GDP per capita for that country in 1952.
'''

# 1.- GDP per capita for all countries in 1982.
europe.loc[:, 'gdpPercap_1982']


Out[69]:
country
Albania                    3630.880722
Austria                   21597.083620
Belgium                   20979.845890
Bosnia and Herzegovina     4126.613157
Bulgaria                   8224.191647
Croatia                   13221.821840
Czech Republic            15377.228550
Denmark                   21688.040480
Finland                   18533.157610
France                    20293.897460
Germany                   22031.532740
Greece                    15268.420890
Hungary                   12545.990660
Iceland                   23269.607500
Ireland                   12618.321410
Italy                     16537.483500
Montenegro                11222.587620
Netherlands               21399.460460
Norway                    26298.635310
Poland                     8451.531004
Portugal                  11753.842910
Romania                    9605.314053
Serbia                    15181.092700
Slovak Republic           11348.545850
Slovenia                  17866.721750
Spain                     13926.169970
Sweden                    20667.381250
Switzerland               28397.715120
Turkey                     4241.356344
United Kingdom            18232.424520
Name: gdpPercap_1982, dtype: float64

In [78]:
# same as result previous but shorter syntax
europe['gdpPercap_1982']


Out[78]:
country
Albania                    3630.880722
Austria                   21597.083620
Belgium                   20979.845890
Bosnia and Herzegovina     4126.613157
Bulgaria                   8224.191647
Croatia                   13221.821840
Czech Republic            15377.228550
Denmark                   21688.040480
Finland                   18533.157610
France                    20293.897460
Germany                   22031.532740
Greece                    15268.420890
Hungary                   12545.990660
Iceland                   23269.607500
Ireland                   12618.321410
Italy                     16537.483500
Montenegro                11222.587620
Netherlands               21399.460460
Norway                    26298.635310
Poland                     8451.531004
Portugal                  11753.842910
Romania                    9605.314053
Serbia                    15181.092700
Slovak Republic           11348.545850
Slovenia                  17866.721750
Spain                     13926.169970
Sweden                    20667.381250
Switzerland               28397.715120
Turkey                     4241.356344
United Kingdom            18232.424520
Name: gdpPercap_1982, dtype: float64

In [70]:
# 2.- GDP per capita for Denmark for all years.
europe.loc['Denmark']


Out[70]:
gdpPercap_1952     9692.385245
gdpPercap_1957    11099.659350
gdpPercap_1962    13583.313510
gdpPercap_1967    15937.211230
gdpPercap_1972    18866.207210
gdpPercap_1977    20422.901500
gdpPercap_1982    21688.040480
gdpPercap_1987    25116.175810
gdpPercap_1992    26406.739850
gdpPercap_1997    29804.345670
gdpPercap_2002    32166.500060
gdpPercap_2007    35278.418740
Name: Denmark, dtype: float64

In [79]:
# 3.- GDP per capita for all countries for years after 1985.
europe.loc[:, 'gdpPercap_1985':]


Out[79]:
gdpPercap_1987 gdpPercap_1992 gdpPercap_1997 gdpPercap_2002 gdpPercap_2007
country
Albania 3738.932735 2497.437901 3193.054604 4604.211737 5937.029526
Austria 23687.826070 27042.018680 29095.920660 32417.607690 36126.492700
Belgium 22525.563080 25575.570690 27561.196630 30485.883750 33692.605080
Bosnia and Herzegovina 4314.114757 2546.781445 4766.355904 6018.975239 7446.298803
Bulgaria 8239.854824 6302.623438 5970.388760 7696.777725 10680.792820
Croatia 13822.583940 8447.794873 9875.604515 11628.388950 14619.222720
Czech Republic 16310.443400 14297.021220 16048.514240 17596.210220 22833.308510
Denmark 25116.175810 26406.739850 29804.345670 32166.500060 35278.418740
Finland 21141.012230 20647.164990 23723.950200 28204.590570 33207.084400
France 22066.442140 24703.796150 25889.784870 28926.032340 30470.016700
Germany 24639.185660 26505.303170 27788.884160 30035.801980 32170.374420
Greece 16120.528390 17541.496340 18747.698140 22514.254800 27538.411880
Hungary 12986.479980 10535.628550 11712.776800 14843.935560 18008.944440
Iceland 26923.206280 25144.392010 28061.099660 31163.201960 36180.789190
Ireland 13872.866520 17558.815550 24521.947130 34077.049390 40675.996350
Italy 19207.234820 22013.644860 24675.024460 27968.098170 28569.719700
Montenegro 11732.510170 7003.339037 6465.613349 6557.194282 9253.896111
Netherlands 23651.323610 26790.949610 30246.130630 33724.757780 36797.933320
Norway 31540.974800 33965.661150 41283.164330 44683.975250 49357.190170
Poland 9082.351172 7738.881247 10159.583680 12002.239080 15389.924680
Portugal 13039.308760 16207.266630 17641.031560 19970.907870 20509.647770
Romania 9696.273295 6598.409903 7346.547557 7885.360081 10808.475610
Serbia 15870.878510 9325.068238 7914.320304 7236.075251 9786.534714
Slovak Republic 12037.267580 9498.467723 12126.230650 13638.778370 18678.314350
Slovenia 18678.534920 14214.716810 17161.107350 20660.019360 25768.257590
Spain 15764.983130 18603.064520 20445.298960 24835.471660 28821.063700
Sweden 23586.929270 23880.016830 25266.594990 29341.630930 33859.748350
Switzerland 30281.704590 31871.530300 32135.323010 34480.957710 37506.419070
Turkey 5089.043686 5678.348271 6601.429915 6508.085718 8458.276384
United Kingdom 21664.787670 22705.092540 26074.531360 29478.999190 33203.261280

In [80]:
# 4.- GDP per capita for each country in 2007 as a multiple of GDP per capita for that country in 1952.
europe['gdpPercap_2007']/europe['gdpPercap_1952']


Out[80]:
country
Albania                   3.708196
Austria                   5.886596
Belgium                   4.038377
Bosnia and Herzegovina    7.648736
Bulgaria                  4.369697
Croatia                   4.686795
Czech Republic            3.320658
Denmark                   3.639808
Finland                   5.168805
France                    4.334402
Germany                   4.503060
Greece                    7.799725
Hungary                   3.421364
Iceland                   4.978308
Ireland                   7.806873
Italy                     5.793425
Montenegro                3.495221
Netherlands               4.115376
Norway                    4.889067
Poland                    3.819475
Portugal                  6.684325
Romania                   3.437140
Serbia                    2.732555
Slovak Republic           3.680703
Slovenia                  6.113405
Spain                     7.517163
Sweden                    3.970493
Switzerland               2.545529
Turkey                    4.295502
United Kingdom            3.327144
dtype: float64

In [ ]: