In [2]:
import pandas as pd
import glob

In [5]:
print(glob.glob('data/*.csv'))


['data/gapminder_gdp_americas.csv', 'data/gapminder_gdp_europe.csv', 'data/gapminder_all.csv', 'data/gapminder_gdp_oceania.csv', 'data/gapminder_gdp_africa.csv', 'data/gapminder_gdp_asia.csv']

In [16]:
data_americas = pd.read_csv('data/gapminder_gdp_americas.csv')

In [17]:
print(data_americas)


   continent              country  gdpPercap_1952  gdpPercap_1957  \
0   Americas            Argentina     5911.315053     6856.856212   
1   Americas              Bolivia     2677.326347     2127.686326   
2   Americas               Brazil     2108.944355     2487.365989   
3   Americas               Canada    11367.161120    12489.950060   
4   Americas                Chile     3939.978789     4315.622723   
5   Americas             Colombia     2144.115096     2323.805581   
6   Americas           Costa Rica     2627.009471     2990.010802   
7   Americas                 Cuba     5586.538780     6092.174359   
8   Americas   Dominican Republic     1397.717137     1544.402995   
9   Americas              Ecuador     3522.110717     3780.546651   
10  Americas          El Salvador     3048.302900     3421.523218   
11  Americas            Guatemala     2428.237769     2617.155967   
12  Americas                Haiti     1840.366939     1726.887882   
13  Americas             Honduras     2194.926204     2220.487682   
14  Americas              Jamaica     2898.530881     4756.525781   
15  Americas               Mexico     3478.125529     4131.546641   
16  Americas            Nicaragua     3112.363948     3457.415947   
17  Americas               Panama     2480.380334     2961.800905   
18  Americas             Paraguay     1952.308701     2046.154706   
19  Americas                 Peru     3758.523437     4245.256698   
20  Americas          Puerto Rico     3081.959785     3907.156189   
21  Americas  Trinidad and Tobago     3023.271928     4100.393400   
22  Americas        United States    13990.482080    14847.127120   
23  Americas              Uruguay     5716.766744     6150.772969   
24  Americas            Venezuela     7689.799761     9802.466526   

    gdpPercap_1962  gdpPercap_1967  gdpPercap_1972  gdpPercap_1977  \
0      7133.166023     8052.953021     9443.038526    10079.026740   
1      2180.972546     2586.886053     2980.331339     3548.097832   
2      3336.585802     3429.864357     4985.711467     6660.118654   
3     13462.485550    16076.588030    18970.570860    22090.883060   
4      4519.094331     5106.654313     5494.024437     4756.763836   
5      2492.351109     2678.729839     3264.660041     3815.807870   
6      3460.937025     4161.727834     5118.146939     5926.876967   
7      5180.755910     5690.268015     5305.445256     6380.494966   
8      1662.137359     1653.723003     2189.874499     2681.988900   
9      4086.114078     4579.074215     5280.994710     6679.623260   
10     3776.803627     4358.595393     4520.246008     5138.922374   
11     2750.364446     3242.531147     4031.408271     4879.992748   
12     1796.589032     1452.057666     1654.456946     1874.298931   
13     2291.156835     2538.269358     2529.842345     3203.208066   
14     5246.107524     6124.703451     7433.889293     6650.195573   
15     4581.609385     5754.733883     6809.406690     7674.929108   
16     3634.364406     4643.393534     4688.593267     5486.371089   
17     3536.540301     4421.009084     5364.249663     5351.912144   
18     2148.027146     2299.376311     2523.337977     3248.373311   
19     4957.037982     5788.093330     5937.827283     6281.290855   
20     5108.344630     6929.277714     9123.041742     9770.524921   
21     4997.523971     5621.368472     6619.551419     7899.554209   
22    16173.145860    19530.365570    21806.035940    24072.632130   
23     5603.357717     5444.619620     5703.408898     6504.339663   
24     8422.974165     9541.474188    10505.259660    13143.950950   

    gdpPercap_1982  gdpPercap_1987  gdpPercap_1992  gdpPercap_1997  \
0      8997.897412     9139.671389     9308.418710    10967.281950   
1      3156.510452     2753.691490     2961.699694     3326.143191   
2      7030.835878     7807.095818     6950.283021     7957.980824   
3     22898.792140    26626.515030    26342.884260    28954.925890   
4      5095.665738     5547.063754     7596.125964    10118.053180   
5      4397.575659     4903.219100     5444.648617     6117.361746   
6      5262.734751     5629.915318     6160.416317     6677.045314   
7      7316.918107     7532.924763     5592.843963     5431.990415   
8      2861.092386     2899.842175     3044.214214     3614.101285   
9      7213.791267     6481.776993     7103.702595     7429.455877   
10     4098.344175     4140.442097     4444.231700     5154.825496   
11     4820.494790     4246.485974     4439.450840     4684.313807   
12     2011.159549     1823.015995     1456.309517     1341.726931   
13     3121.760794     3023.096699     3081.694603     3160.454906   
14     6068.051350     6351.237495     7404.923685     7121.924704   
15     9611.147541     8688.156003     9472.384295     9767.297530   
16     3470.338156     2955.984375     2170.151724     2253.023004   
17     7009.601598     7034.779161     6618.743050     7113.692252   
18     4258.503604     3998.875695     4196.411078     4247.400261   
19     6434.501797     6360.943444     4446.380924     5838.347657   
20    10330.989150    12281.341910    14641.587110    16999.433300   
21     9119.528607     7388.597823     7370.990932     8792.573126   
22    25009.559140    29884.350410    32003.932240    35767.433030   
23     6920.223051     7452.398969     8137.004775     9230.240708   
24    11152.410110     9883.584648    10733.926310    10165.495180   

    gdpPercap_2002  gdpPercap_2007  
0      8797.640716    12779.379640  
1      3413.262690     3822.137084  
2      8131.212843     9065.800825  
3     33328.965070    36319.235010  
4     10778.783850    13171.638850  
5      5755.259962     7006.580419  
6      7723.447195     9645.061420  
7      6340.646683     8948.102923  
8      4563.808154     6025.374752  
9      5773.044512     6873.262326  
10     5351.568666     5728.353514  
11     4858.347495     5186.050003  
12     1270.364932     1201.637154  
13     3099.728660     3548.330846  
14     6994.774861     7320.880262  
15    10742.440530    11977.574960  
16     2474.548819     2749.320965  
17     7356.031934     9809.185636  
18     3783.674243     4172.838464  
19     5909.020073     7408.905561  
20    18855.606180    19328.709010  
21    11460.600230    18008.509240  
22    39097.099550    42951.653090  
23     7727.002004    10611.462990  
24     8605.047831    11415.805690  

In [19]:
data_europe = pd.read_csv('data/gapminder_gdp_europe.csv', index_col='country')

In [20]:
data_europe


Out[20]:
gdpPercap_1952 gdpPercap_1957 gdpPercap_1962 gdpPercap_1967 gdpPercap_1972 gdpPercap_1977 gdpPercap_1982 gdpPercap_1987 gdpPercap_1992 gdpPercap_1997 gdpPercap_2002 gdpPercap_2007
country
Albania 1601.056136 1942.284244 2312.888958 2760.196931 3313.422188 3533.003910 3630.880722 3738.932735 2497.437901 3193.054604 4604.211737 5937.029526
Austria 6137.076492 8842.598030 10750.721110 12834.602400 16661.625600 19749.422300 21597.083620 23687.826070 27042.018680 29095.920660 32417.607690 36126.492700
Belgium 8343.105127 9714.960623 10991.206760 13149.041190 16672.143560 19117.974480 20979.845890 22525.563080 25575.570690 27561.196630 30485.883750 33692.605080
Bosnia and Herzegovina 973.533195 1353.989176 1709.683679 2172.352423 2860.169750 3528.481305 4126.613157 4314.114757 2546.781445 4766.355904 6018.975239 7446.298803
Bulgaria 2444.286648 3008.670727 4254.337839 5577.002800 6597.494398 7612.240438 8224.191647 8239.854824 6302.623438 5970.388760 7696.777725 10680.792820
Croatia 3119.236520 4338.231617 5477.890018 6960.297861 9164.090127 11305.385170 13221.821840 13822.583940 8447.794873 9875.604515 11628.388950 14619.222720
Czech Republic 6876.140250 8256.343918 10136.867130 11399.444890 13108.453600 14800.160620 15377.228550 16310.443400 14297.021220 16048.514240 17596.210220 22833.308510
Denmark 9692.385245 11099.659350 13583.313510 15937.211230 18866.207210 20422.901500 21688.040480 25116.175810 26406.739850 29804.345670 32166.500060 35278.418740
Finland 6424.519071 7545.415386 9371.842561 10921.636260 14358.875900 15605.422830 18533.157610 21141.012230 20647.164990 23723.950200 28204.590570 33207.084400
France 7029.809327 8662.834898 10560.485530 12999.917660 16107.191710 18292.635140 20293.897460 22066.442140 24703.796150 25889.784870 28926.032340 30470.016700
Germany 7144.114393 10187.826650 12902.462910 14745.625610 18016.180270 20512.921230 22031.532740 24639.185660 26505.303170 27788.884160 30035.801980 32170.374420
Greece 3530.690067 4916.299889 6017.190733 8513.097016 12724.829570 14195.524280 15268.420890 16120.528390 17541.496340 18747.698140 22514.254800 27538.411880
Hungary 5263.673816 6040.180011 7550.359877 9326.644670 10168.656110 11674.837370 12545.990660 12986.479980 10535.628550 11712.776800 14843.935560 18008.944440
Iceland 7267.688428 9244.001412 10350.159060 13319.895680 15798.063620 19654.962470 23269.607500 26923.206280 25144.392010 28061.099660 31163.201960 36180.789190
Ireland 5210.280328 5599.077872 6631.597314 7655.568963 9530.772896 11150.981130 12618.321410 13872.866520 17558.815550 24521.947130 34077.049390 40675.996350
Italy 4931.404155 6248.656232 8243.582340 10022.401310 12269.273780 14255.984750 16537.483500 19207.234820 22013.644860 24675.024460 27968.098170 28569.719700
Montenegro 2647.585601 3682.259903 4649.593785 5907.850937 7778.414017 9595.929905 11222.587620 11732.510170 7003.339037 6465.613349 6557.194282 9253.896111
Netherlands 8941.571858 11276.193440 12790.849560 15363.251360 18794.745670 21209.059200 21399.460460 23651.323610 26790.949610 30246.130630 33724.757780 36797.933320
Norway 10095.421720 11653.973040 13450.401510 16361.876470 18965.055510 23311.349390 26298.635310 31540.974800 33965.661150 41283.164330 44683.975250 49357.190170
Poland 4029.329699 4734.253019 5338.752143 6557.152776 8006.506993 9508.141454 8451.531004 9082.351172 7738.881247 10159.583680 12002.239080 15389.924680
Portugal 3068.319867 3774.571743 4727.954889 6361.517993 9022.247417 10172.485720 11753.842910 13039.308760 16207.266630 17641.031560 19970.907870 20509.647770
Romania 3144.613186 3943.370225 4734.997586 6470.866545 8011.414402 9356.397240 9605.314053 9696.273295 6598.409903 7346.547557 7885.360081 10808.475610
Serbia 3581.459448 4981.090891 6289.629157 7991.707066 10522.067490 12980.669560 15181.092700 15870.878510 9325.068238 7914.320304 7236.075251 9786.534714
Slovak Republic 5074.659104 6093.262980 7481.107598 8412.902397 9674.167626 10922.664040 11348.545850 12037.267580 9498.467723 12126.230650 13638.778370 18678.314350
Slovenia 4215.041741 5862.276629 7402.303395 9405.489397 12383.486200 15277.030170 17866.721750 18678.534920 14214.716810 17161.107350 20660.019360 25768.257590
Spain 3834.034742 4564.802410 5693.843879 7993.512294 10638.751310 13236.921170 13926.169970 15764.983130 18603.064520 20445.298960 24835.471660 28821.063700
Sweden 8527.844662 9911.878226 12329.441920 15258.296970 17832.024640 18855.725210 20667.381250 23586.929270 23880.016830 25266.594990 29341.630930 33859.748350
Switzerland 14734.232750 17909.489730 20431.092700 22966.144320 27195.113040 26982.290520 28397.715120 30281.704590 31871.530300 32135.323010 34480.957710 37506.419070
Turkey 1969.100980 2218.754257 2322.869908 2826.356387 3450.696380 4269.122326 4241.356344 5089.043686 5678.348271 6601.429915 6508.085718 8458.276384
United Kingdom 9979.508487 11283.177950 12477.177070 14142.850890 15895.116410 17428.748460 18232.424520 21664.787670 22705.092540 26074.531360 29478.999190 33203.261280

In [22]:
data_europe.info()


<class 'pandas.core.frame.DataFrame'>
Index: 30 entries, Albania to United Kingdom
Data columns (total 12 columns):
gdpPercap_1952    30 non-null float64
gdpPercap_1957    30 non-null float64
gdpPercap_1962    30 non-null float64
gdpPercap_1967    30 non-null float64
gdpPercap_1972    30 non-null float64
gdpPercap_1977    30 non-null float64
gdpPercap_1982    30 non-null float64
gdpPercap_1987    30 non-null float64
gdpPercap_1992    30 non-null float64
gdpPercap_1997    30 non-null float64
gdpPercap_2002    30 non-null float64
gdpPercap_2007    30 non-null float64
dtypes: float64(12)
memory usage: 3.0+ KB

In [23]:
data_europe.columns


Out[23]:
Index(['gdpPercap_1952', 'gdpPercap_1957', 'gdpPercap_1962', 'gdpPercap_1967',
       'gdpPercap_1972', 'gdpPercap_1977', 'gdpPercap_1982', 'gdpPercap_1987',
       'gdpPercap_1992', 'gdpPercap_1997', 'gdpPercap_2002', 'gdpPercap_2007'],
      dtype='object')

In [24]:
data_europe.T


Out[24]:
country Albania Austria Belgium Bosnia and Herzegovina Bulgaria Croatia Czech Republic Denmark Finland France ... Portugal Romania Serbia Slovak Republic Slovenia Spain Sweden Switzerland Turkey United Kingdom
gdpPercap_1952 1601.056136 6137.076492 8343.105127 973.533195 2444.286648 3119.236520 6876.140250 9692.385245 6424.519071 7029.809327 ... 3068.319867 3144.613186 3581.459448 5074.659104 4215.041741 3834.034742 8527.844662 14734.23275 1969.100980 9979.508487
gdpPercap_1957 1942.284244 8842.598030 9714.960623 1353.989176 3008.670727 4338.231617 8256.343918 11099.659350 7545.415386 8662.834898 ... 3774.571743 3943.370225 4981.090891 6093.262980 5862.276629 4564.802410 9911.878226 17909.48973 2218.754257 11283.177950
gdpPercap_1962 2312.888958 10750.721110 10991.206760 1709.683679 4254.337839 5477.890018 10136.867130 13583.313510 9371.842561 10560.485530 ... 4727.954889 4734.997586 6289.629157 7481.107598 7402.303395 5693.843879 12329.441920 20431.09270 2322.869908 12477.177070
gdpPercap_1967 2760.196931 12834.602400 13149.041190 2172.352423 5577.002800 6960.297861 11399.444890 15937.211230 10921.636260 12999.917660 ... 6361.517993 6470.866545 7991.707066 8412.902397 9405.489397 7993.512294 15258.296970 22966.14432 2826.356387 14142.850890
gdpPercap_1972 3313.422188 16661.625600 16672.143560 2860.169750 6597.494398 9164.090127 13108.453600 18866.207210 14358.875900 16107.191710 ... 9022.247417 8011.414402 10522.067490 9674.167626 12383.486200 10638.751310 17832.024640 27195.11304 3450.696380 15895.116410
gdpPercap_1977 3533.003910 19749.422300 19117.974480 3528.481305 7612.240438 11305.385170 14800.160620 20422.901500 15605.422830 18292.635140 ... 10172.485720 9356.397240 12980.669560 10922.664040 15277.030170 13236.921170 18855.725210 26982.29052 4269.122326 17428.748460
gdpPercap_1982 3630.880722 21597.083620 20979.845890 4126.613157 8224.191647 13221.821840 15377.228550 21688.040480 18533.157610 20293.897460 ... 11753.842910 9605.314053 15181.092700 11348.545850 17866.721750 13926.169970 20667.381250 28397.71512 4241.356344 18232.424520
gdpPercap_1987 3738.932735 23687.826070 22525.563080 4314.114757 8239.854824 13822.583940 16310.443400 25116.175810 21141.012230 22066.442140 ... 13039.308760 9696.273295 15870.878510 12037.267580 18678.534920 15764.983130 23586.929270 30281.70459 5089.043686 21664.787670
gdpPercap_1992 2497.437901 27042.018680 25575.570690 2546.781445 6302.623438 8447.794873 14297.021220 26406.739850 20647.164990 24703.796150 ... 16207.266630 6598.409903 9325.068238 9498.467723 14214.716810 18603.064520 23880.016830 31871.53030 5678.348271 22705.092540
gdpPercap_1997 3193.054604 29095.920660 27561.196630 4766.355904 5970.388760 9875.604515 16048.514240 29804.345670 23723.950200 25889.784870 ... 17641.031560 7346.547557 7914.320304 12126.230650 17161.107350 20445.298960 25266.594990 32135.32301 6601.429915 26074.531360
gdpPercap_2002 4604.211737 32417.607690 30485.883750 6018.975239 7696.777725 11628.388950 17596.210220 32166.500060 28204.590570 28926.032340 ... 19970.907870 7885.360081 7236.075251 13638.778370 20660.019360 24835.471660 29341.630930 34480.95771 6508.085718 29478.999190
gdpPercap_2007 5937.029526 36126.492700 33692.605080 7446.298803 10680.792820 14619.222720 22833.308510 35278.418740 33207.084400 30470.016700 ... 20509.647770 10808.475610 9786.534714 18678.314350 25768.257590 28821.063700 33859.748350 37506.41907 8458.276384 33203.261280

12 rows × 30 columns


In [25]:
data_europe


Out[25]:
gdpPercap_1952 gdpPercap_1957 gdpPercap_1962 gdpPercap_1967 gdpPercap_1972 gdpPercap_1977 gdpPercap_1982 gdpPercap_1987 gdpPercap_1992 gdpPercap_1997 gdpPercap_2002 gdpPercap_2007
country
Albania 1601.056136 1942.284244 2312.888958 2760.196931 3313.422188 3533.003910 3630.880722 3738.932735 2497.437901 3193.054604 4604.211737 5937.029526
Austria 6137.076492 8842.598030 10750.721110 12834.602400 16661.625600 19749.422300 21597.083620 23687.826070 27042.018680 29095.920660 32417.607690 36126.492700
Belgium 8343.105127 9714.960623 10991.206760 13149.041190 16672.143560 19117.974480 20979.845890 22525.563080 25575.570690 27561.196630 30485.883750 33692.605080
Bosnia and Herzegovina 973.533195 1353.989176 1709.683679 2172.352423 2860.169750 3528.481305 4126.613157 4314.114757 2546.781445 4766.355904 6018.975239 7446.298803
Bulgaria 2444.286648 3008.670727 4254.337839 5577.002800 6597.494398 7612.240438 8224.191647 8239.854824 6302.623438 5970.388760 7696.777725 10680.792820
Croatia 3119.236520 4338.231617 5477.890018 6960.297861 9164.090127 11305.385170 13221.821840 13822.583940 8447.794873 9875.604515 11628.388950 14619.222720
Czech Republic 6876.140250 8256.343918 10136.867130 11399.444890 13108.453600 14800.160620 15377.228550 16310.443400 14297.021220 16048.514240 17596.210220 22833.308510
Denmark 9692.385245 11099.659350 13583.313510 15937.211230 18866.207210 20422.901500 21688.040480 25116.175810 26406.739850 29804.345670 32166.500060 35278.418740
Finland 6424.519071 7545.415386 9371.842561 10921.636260 14358.875900 15605.422830 18533.157610 21141.012230 20647.164990 23723.950200 28204.590570 33207.084400
France 7029.809327 8662.834898 10560.485530 12999.917660 16107.191710 18292.635140 20293.897460 22066.442140 24703.796150 25889.784870 28926.032340 30470.016700
Germany 7144.114393 10187.826650 12902.462910 14745.625610 18016.180270 20512.921230 22031.532740 24639.185660 26505.303170 27788.884160 30035.801980 32170.374420
Greece 3530.690067 4916.299889 6017.190733 8513.097016 12724.829570 14195.524280 15268.420890 16120.528390 17541.496340 18747.698140 22514.254800 27538.411880
Hungary 5263.673816 6040.180011 7550.359877 9326.644670 10168.656110 11674.837370 12545.990660 12986.479980 10535.628550 11712.776800 14843.935560 18008.944440
Iceland 7267.688428 9244.001412 10350.159060 13319.895680 15798.063620 19654.962470 23269.607500 26923.206280 25144.392010 28061.099660 31163.201960 36180.789190
Ireland 5210.280328 5599.077872 6631.597314 7655.568963 9530.772896 11150.981130 12618.321410 13872.866520 17558.815550 24521.947130 34077.049390 40675.996350
Italy 4931.404155 6248.656232 8243.582340 10022.401310 12269.273780 14255.984750 16537.483500 19207.234820 22013.644860 24675.024460 27968.098170 28569.719700
Montenegro 2647.585601 3682.259903 4649.593785 5907.850937 7778.414017 9595.929905 11222.587620 11732.510170 7003.339037 6465.613349 6557.194282 9253.896111
Netherlands 8941.571858 11276.193440 12790.849560 15363.251360 18794.745670 21209.059200 21399.460460 23651.323610 26790.949610 30246.130630 33724.757780 36797.933320
Norway 10095.421720 11653.973040 13450.401510 16361.876470 18965.055510 23311.349390 26298.635310 31540.974800 33965.661150 41283.164330 44683.975250 49357.190170
Poland 4029.329699 4734.253019 5338.752143 6557.152776 8006.506993 9508.141454 8451.531004 9082.351172 7738.881247 10159.583680 12002.239080 15389.924680
Portugal 3068.319867 3774.571743 4727.954889 6361.517993 9022.247417 10172.485720 11753.842910 13039.308760 16207.266630 17641.031560 19970.907870 20509.647770
Romania 3144.613186 3943.370225 4734.997586 6470.866545 8011.414402 9356.397240 9605.314053 9696.273295 6598.409903 7346.547557 7885.360081 10808.475610
Serbia 3581.459448 4981.090891 6289.629157 7991.707066 10522.067490 12980.669560 15181.092700 15870.878510 9325.068238 7914.320304 7236.075251 9786.534714
Slovak Republic 5074.659104 6093.262980 7481.107598 8412.902397 9674.167626 10922.664040 11348.545850 12037.267580 9498.467723 12126.230650 13638.778370 18678.314350
Slovenia 4215.041741 5862.276629 7402.303395 9405.489397 12383.486200 15277.030170 17866.721750 18678.534920 14214.716810 17161.107350 20660.019360 25768.257590
Spain 3834.034742 4564.802410 5693.843879 7993.512294 10638.751310 13236.921170 13926.169970 15764.983130 18603.064520 20445.298960 24835.471660 28821.063700
Sweden 8527.844662 9911.878226 12329.441920 15258.296970 17832.024640 18855.725210 20667.381250 23586.929270 23880.016830 25266.594990 29341.630930 33859.748350
Switzerland 14734.232750 17909.489730 20431.092700 22966.144320 27195.113040 26982.290520 28397.715120 30281.704590 31871.530300 32135.323010 34480.957710 37506.419070
Turkey 1969.100980 2218.754257 2322.869908 2826.356387 3450.696380 4269.122326 4241.356344 5089.043686 5678.348271 6601.429915 6508.085718 8458.276384
United Kingdom 9979.508487 11283.177950 12477.177070 14142.850890 15895.116410 17428.748460 18232.424520 21664.787670 22705.092540 26074.531360 29478.999190 33203.261280

In [27]:
data_europe.describe()


Out[27]:
gdpPercap_1952 gdpPercap_1957 gdpPercap_1962 gdpPercap_1967 gdpPercap_1972 gdpPercap_1977 gdpPercap_1982 gdpPercap_1987 gdpPercap_1992 gdpPercap_1997 gdpPercap_2002 gdpPercap_2007
count 30.000000 30.000000 30.000000 30.000000 30.000000 30.000000 30.000000 30.000000 30.000000 30.000000 30.000000 30.000000
mean 5661.057435 6963.012816 8365.486814 10143.823757 12479.575246 14283.979110 15617.896551 17214.310727 17061.568084 19076.781802 21711.732422 25054.481636
std 3114.060493 3677.950146 4199.193906 4724.983889 5509.691411 5874.464896 6453.234827 7482.957960 9109.804361 10065.457716 11197.355517 11800.339811
min 973.533195 1353.989176 1709.683679 2172.352423 2860.169750 3528.481305 3630.880722 3738.932735 2497.437901 3193.054604 4604.211737 5937.029526
25% 3241.132406 4394.874315 5373.536612 6657.939047 9057.708095 10360.030300 11449.870115 12274.570680 8667.113214 9946.599306 11721.851483 14811.898210
50% 5142.469716 6066.721495 7515.733738 9366.067033 12326.379990 14225.754515 15322.824720 16215.485895 17550.155945 19596.498550 23674.863230 28054.065790
75% 7236.794919 9597.220820 10931.085347 13277.182057 16523.017127 19052.412163 20901.729730 23321.587723 25034.243045 27189.530312 30373.363307 33817.962533
max 14734.232750 17909.489730 20431.092700 22966.144320 27195.113040 26982.290520 28397.715120 31540.974800 33965.661150 41283.164330 44683.975250 49357.190170

In [28]:
help(data_americas.head)


Help on method head in module pandas.core.generic:

head(n=5) method of pandas.core.frame.DataFrame instance
    Return the first `n` rows.
    
    This function returns the first `n` rows for the object based
    on position. It is useful for quickly testing if your object
    has the right type of data in it.
    
    Parameters
    ----------
    n : int, default 5
        Number of rows to select.
    
    Returns
    -------
    obj_head : type of caller
        The first `n` rows of the caller object.
    
    See Also
    --------
    pandas.DataFrame.tail: Returns the last `n` rows.
    
    Examples
    --------
    >>> df = pd.DataFrame({'animal':['alligator', 'bee', 'falcon', 'lion',
    ...                    'monkey', 'parrot', 'shark', 'whale', 'zebra']})
    >>> df
          animal
    0  alligator
    1        bee
    2     falcon
    3       lion
    4     monkey
    5     parrot
    6      shark
    7      whale
    8      zebra
    
    Viewing the first 5 lines
    
    >>> df.head()
          animal
    0  alligator
    1        bee
    2     falcon
    3       lion
    4     monkey
    
    Viewing the first `n` lines (three in this case)
    
    >>> df.head(3)
          animal
    0  alligator
    1        bee
    2     falcon


In [30]:
data_americas.head()


Out[30]:
continent country gdpPercap_1952 gdpPercap_1957 gdpPercap_1962 gdpPercap_1967 gdpPercap_1972 gdpPercap_1977 gdpPercap_1982 gdpPercap_1987 gdpPercap_1992 gdpPercap_1997 gdpPercap_2002 gdpPercap_2007
0 Americas Argentina 5911.315053 6856.856212 7133.166023 8052.953021 9443.038526 10079.026740 8997.897412 9139.671389 9308.418710 10967.281950 8797.640716 12779.379640
1 Americas Bolivia 2677.326347 2127.686326 2180.972546 2586.886053 2980.331339 3548.097832 3156.510452 2753.691490 2961.699694 3326.143191 3413.262690 3822.137084
2 Americas Brazil 2108.944355 2487.365989 3336.585802 3429.864357 4985.711467 6660.118654 7030.835878 7807.095818 6950.283021 7957.980824 8131.212843 9065.800825
3 Americas Canada 11367.161120 12489.950060 13462.485550 16076.588030 18970.570860 22090.883060 22898.792140 26626.515030 26342.884260 28954.925890 33328.965070 36319.235010
4 Americas Chile 3939.978789 4315.622723 4519.094331 5106.654313 5494.024437 4756.763836 5095.665738 5547.063754 7596.125964 10118.053180 10778.783850 13171.638850

In [31]:
data_americas.tail()


Out[31]:
continent country gdpPercap_1952 gdpPercap_1957 gdpPercap_1962 gdpPercap_1967 gdpPercap_1972 gdpPercap_1977 gdpPercap_1982 gdpPercap_1987 gdpPercap_1992 gdpPercap_1997 gdpPercap_2002 gdpPercap_2007
20 Americas Puerto Rico 3081.959785 3907.156189 5108.344630 6929.277714 9123.041742 9770.524921 10330.989150 12281.341910 14641.587110 16999.433300 18855.606180 19328.70901
21 Americas Trinidad and Tobago 3023.271928 4100.393400 4997.523971 5621.368472 6619.551419 7899.554209 9119.528607 7388.597823 7370.990932 8792.573126 11460.600230 18008.50924
22 Americas United States 13990.482080 14847.127120 16173.145860 19530.365570 21806.035940 24072.632130 25009.559140 29884.350410 32003.932240 35767.433030 39097.099550 42951.65309
23 Americas Uruguay 5716.766744 6150.772969 5603.357717 5444.619620 5703.408898 6504.339663 6920.223051 7452.398969 8137.004775 9230.240708 7727.002004 10611.46299
24 Americas Venezuela 7689.799761 9802.466526 8422.974165 9541.474188 10505.259660 13143.950950 11152.410110 9883.584648 10733.926310 10165.495180 8605.047831 11415.80569

In [32]:
data_americas_flipped = data_americas.T
data_americas_flipped.tail(3)


Out[32]:
0 1 2 3 4 5 6 7 8 9 ... 15 16 17 18 19 20 21 22 23 24
gdpPercap_1997 10967.3 3326.14 7957.98 28954.9 10118.1 6117.36 6677.05 5431.99 3614.1 7429.46 ... 9767.3 2253.02 7113.69 4247.4 5838.35 16999.4 8792.57 35767.4 9230.24 10165.5
gdpPercap_2002 8797.64 3413.26 8131.21 33329 10778.8 5755.26 7723.45 6340.65 4563.81 5773.04 ... 10742.4 2474.55 7356.03 3783.67 5909.02 18855.6 11460.6 39097.1 7727 8605.05
gdpPercap_2007 12779.4 3822.14 9065.8 36319.2 13171.6 7006.58 9645.06 8948.1 6025.37 6873.26 ... 11977.6 2749.32 9809.19 4172.84 7408.91 19328.7 18008.5 42951.7 10611.5 11415.8

3 rows × 25 columns


In [37]:
help(data_americas_flipped.to_csv)


Help on method to_csv in module pandas.core.frame:

to_csv(path_or_buf=None, sep=',', na_rep='', float_format=None, columns=None, header=True, index=True, index_label=None, mode='w', encoding=None, compression=None, quoting=None, quotechar='"', line_terminator='\n', chunksize=None, tupleize_cols=None, date_format=None, doublequote=True, escapechar=None, decimal='.') method of pandas.core.frame.DataFrame instance
    Write DataFrame to a comma-separated values (csv) file
    
    Parameters
    ----------
    path_or_buf : string or file handle, default None
        File path or object, if None is provided the result is returned as
        a string.
    sep : character, default ','
        Field delimiter for the output file.
    na_rep : string, default ''
        Missing data representation
    float_format : string, default None
        Format string for floating point numbers
    columns : sequence, optional
        Columns to write
    header : boolean or list of string, default True
        Write out the column names. If a list of strings is given it is
        assumed to be aliases for the column names
    index : boolean, default True
        Write row names (index)
    index_label : string or sequence, or False, default None
        Column label for index column(s) if desired. If None is given, and
        `header` and `index` are True, then the index names are used. A
        sequence should be given if the DataFrame uses MultiIndex.  If
        False do not print fields for index names. Use index_label=False
        for easier importing in R
    mode : str
        Python write mode, default 'w'
    encoding : string, optional
        A string representing the encoding to use in the output file,
        defaults to 'ascii' on Python 2 and 'utf-8' on Python 3.
    compression : string, optional
        A string representing the compression to use in the output file.
        Allowed values are 'gzip', 'bz2', 'zip', 'xz'. This input is only
        used when the first argument is a filename.
    line_terminator : string, default ``'\n'``
        The newline character or character sequence to use in the output
        file
    quoting : optional constant from csv module
        defaults to csv.QUOTE_MINIMAL. If you have set a `float_format`
        then floats are converted to strings and thus csv.QUOTE_NONNUMERIC
        will treat them as non-numeric
    quotechar : string (length 1), default '\"'
        character used to quote fields
    doublequote : boolean, default True
        Control quoting of `quotechar` inside a field
    escapechar : string (length 1), default None
        character used to escape `sep` and `quotechar` when appropriate
    chunksize : int or None
        rows to write at a time
    tupleize_cols : boolean, default False
        .. deprecated:: 0.21.0
           This argument will be removed and will always write each row
           of the multi-index as a separate row in the CSV file.
    
        Write MultiIndex columns as a list of tuples (if True) or in
        the new, expanded format, where each MultiIndex column is a row
        in the CSV (if False).
    date_format : string, default None
        Format string for datetime objects
    decimal: string, default '.'
        Character recognized as decimal separator. E.g. use ',' for
        European data


In [39]:
data_americas_flipped.to_csv('data/data_americas_flipped.csv')

In [40]:
ls 'data'


data_americas_flipped.csv   gapminder_gdp_asia.csv
gapminder_all.csv           gapminder_gdp_europe.csv
gapminder_gdp_africa.csv    gapminder_gdp_oceania.csv
gapminder_gdp_americas.csv

In [ ]: