In [1]:
from __future__ import division
# %pylab
import numpy as np
import epg
In [2]:
np.set_printoptions(suppress=True, precision=4, linewidth=300)
In [3]:
T1 = 1000e-3
T2 = 100e-3
TE = 5e-3
P_z = np.array([[0],[0],[1]])
P_xy = np.array([[1],[1],[0]])
def eRF(P, a, p):
return epg.rf(P, np.pi/180 * a, np.pi/180*p)
def eTE(P, a, p):
return epg.FSE_TE(P, a * np.pi/180, p * np.pi / 180, TE, T1, T2)
def eRelax(P, T):
return epg.relax(P, T, T1, T2)
def eGrad(P):
return epg.grad(P)
In [4]:
Q1 = eGrad(P_xy)
print Q1
In [5]:
Q2 = eRF(Q1, 120, 0)
print Q2
In [6]:
Q3 = eGrad(Q2)
print Q3
In [7]:
Q4 = eGrad(eRF(eGrad(Q3), 120, 0))
print Q4
In [8]:
Q5 = eGrad(eRF(eGrad(Q4), 100, 0))
print Q5
In [9]:
Q6 = eGrad(eRF(eGrad(Q5), 120, 0))
print Q6
In [10]:
P1 = eRF(P_z, 90, 90)
P1
Out[10]:
In [11]:
P2 = eTE(P1, 120, 0)
P2
Out[11]:
In [12]:
P3 = eTE(P2, 120, 0)
P3
Out[12]:
In [13]:
P4 = eRelax(P3, TE/2)
P4
Out[13]:
In [14]:
P5 = eGrad(P4)
P5
Out[14]:
In [15]:
P6 = eRF(P5, 120, 0)
P6
Out[15]:
In [16]:
P7 = eGrad(P6)
P7
Out[16]:
In [17]:
P8 = eRelax(P7, TE/2)
P8
Out[17]:
In [18]:
P9 = eTE(P8, 100, 0)
P9
Out[18]:
In [19]:
P10 = eTE(P9, 100, 0)
P10
Out[19]:
In [20]:
P11 = eTE(P10, 100, 0)
P11
Out[20]:
In [ ]:
In [ ]:
In [ ]:
In [ ]: