0it [00:00, ?it/s]
1it [00:04, 4.12s/it]
2it [00:07, 3.85s/it]
3it [00:11, 3.84s/it]
4it [00:15, 3.82s/it]
5it [00:19, 3.84s/it]
6it [00:24, 4.03s/it]
7it [00:28, 4.08s/it]
8it [00:32, 4.12s/it]
9it [00:38, 4.23s/it]
10it [00:42, 4.27s/it]
11it [00:47, 4.27s/it]
12it [00:51, 4.31s/it]
13it [00:56, 4.37s/it]
14it [01:01, 4.42s/it]
15it [01:06, 4.47s/it]
16it [01:11, 4.50s/it]
17it [01:16, 4.52s/it]
18it [01:21, 4.53s/it]
19it [01:26, 4.56s/it]
20it [01:31, 4.57s/it]
21it [01:36, 4.57s/it]
22it [01:40, 4.57s/it]
23it [01:44, 4.56s/it]
24it [01:49, 4.56s/it]
25it [01:53, 4.56s/it]
26it [01:58, 4.56s/it]
27it [02:02, 4.55s/it]
28it [02:07, 4.55s/it]
29it [02:12, 4.55s/it]
30it [02:16, 4.55s/it]
31it [02:21, 4.58s/it]
32it [02:26, 4.59s/it]
33it [02:31, 4.58s/it]
34it [02:35, 4.58s/it]
35it [02:40, 4.58s/it]
36it [02:45, 4.58s/it]
37it [02:50, 4.60s/it]
38it [02:55, 4.61s/it]
39it [03:00, 4.62s/it]
40it [03:05, 4.64s/it]
41it [03:10, 4.65s/it]
42it [03:16, 4.67s/it]
43it [03:22, 4.71s/it]
44it [03:26, 4.70s/it]
45it [03:31, 4.69s/it]
46it [03:35, 4.68s/it]
47it [03:39, 4.68s/it]
48it [03:44, 4.67s/it]
49it [03:48, 4.66s/it]
50it [03:52, 4.66s/it]
51it [03:57, 4.66s/it]
52it [04:02, 4.66s/it]
53it [04:07, 4.67s/it]
54it [04:11, 4.66s/it]
55it [04:16, 4.65s/it]
56it [04:20, 4.65s/it]
57it [04:24, 4.64s/it]
58it [04:29, 4.64s/it]
59it [04:33, 4.64s/it]
60it [04:37, 4.63s/it]
61it [04:42, 4.63s/it]
62it [04:46, 4.62s/it]
63it [04:51, 4.62s/it]
64it [04:55, 4.62s/it]
65it [04:59, 4.61s/it]
66it [05:04, 4.61s/it]
67it [05:08, 4.61s/it]
68it [05:13, 4.61s/it]
69it [05:18, 4.61s/it]
70it [05:23, 4.61s/it]
71it [05:27, 4.61s/it]
72it [05:32, 4.62s/it]
73it [05:36, 4.61s/it]
74it [05:41, 4.62s/it]
75it [05:46, 4.62s/it]
76it [05:50, 4.61s/it]
77it [05:54, 4.61s/it]
78it [05:59, 4.61s/it]
79it [06:03, 4.60s/it]
80it [06:07, 4.60s/it]
81it [06:12, 4.60s/it]
82it [06:16, 4.60s/it]
83it [06:21, 4.60s/it]
84it [06:26, 4.60s/it]
85it [06:31, 4.61s/it]
86it [06:36, 4.61s/it]
87it [06:40, 4.61s/it]
88it [06:45, 4.61s/it]
89it [06:49, 4.61s/it]
90it [06:54, 4.60s/it]
91it [06:58, 4.60s/it]
92it [07:03, 4.60s/it]
93it [07:07, 4.60s/it]
94it [07:11, 4.59s/it]
95it [07:16, 4.59s/it]
96it [07:21, 4.60s/it]
97it [07:26, 4.60s/it]
98it [07:30, 4.60s/it]
99it [07:35, 4.60s/it]
100it [07:40, 4.60s/it]
101it [07:44, 4.60s/it]
102it [07:49, 4.60s/it]
103it [07:53, 4.60s/it]
104it [07:57, 4.59s/it]
105it [08:02, 4.59s/it]
106it [08:06, 4.59s/it]
107it [08:10, 4.59s/it]
108it [08:15, 4.59s/it]
109it [08:20, 4.59s/it]
110it [08:24, 4.59s/it]
111it [08:29, 4.59s/it]
112it [08:33, 4.59s/it]
113it [08:38, 4.59s/it]
114it [08:43, 4.59s/it]
115it [08:48, 4.59s/it]
116it [08:53, 4.60s/it]
117it [08:58, 4.60s/it]
118it [09:03, 4.61s/it]
119it [09:08, 4.61s/it]
120it [09:12, 4.61s/it]
121it [09:16, 4.60s/it]
122it [09:21, 4.60s/it]
123it [09:26, 4.60s/it]
124it [09:30, 4.60s/it]
125it [09:35, 4.60s/it]
126it [09:39, 4.60s/it]
127it [09:44, 4.60s/it]
128it [09:48, 4.60s/it]
129it [09:53, 4.60s/it]
130it [09:58, 4.61s/it]
131it [10:03, 4.61s/it]
132it [10:08, 4.61s/it]
133it [10:13, 4.61s/it]
134it [10:18, 4.61s/it]
135it [10:22, 4.61s/it]
136it [10:27, 4.61s/it]
137it [10:31, 4.61s/it]
138it [10:35, 4.61s/it]
139it [10:40, 4.61s/it]
140it [10:44, 4.61s/it]
141it [10:49, 4.61s/it]
142it [10:53, 4.60s/it]
143it [10:58, 4.60s/it]
144it [11:02, 4.60s/it]
145it [11:06, 4.60s/it]
146it [11:11, 4.60s/it]
147it [11:15, 4.60s/it]
148it [11:20, 4.60s/it]
149it [11:24, 4.60s/it]
150it [11:29, 4.60s/it]
151it [11:34, 4.60s/it]
152it [11:38, 4.60s/it]
153it [11:43, 4.60s/it]
154it [11:47, 4.60s/it]
155it [11:52, 4.60s/it]
156it [11:56, 4.59s/it]
157it [12:01, 4.59s/it]
158it [12:05, 4.59s/it]
159it [12:10, 4.59s/it]
160it [12:15, 4.60s/it]
161it [12:19, 4.60s/it]
162it [12:26, 4.61s/it]
163it [12:31, 4.61s/it]
164it [12:35, 4.61s/it]
165it [12:40, 4.61s/it]
166it [12:44, 4.61s/it]
167it [12:49, 4.61s/it]
168it [12:54, 4.61s/it]
169it [12:58, 4.61s/it]
170it [13:02, 4.61s/it]
171it [13:07, 4.61s/it]
172it [13:12, 4.61s/it]
173it [13:17, 4.61s/it]
174it [13:21, 4.61s/it]
175it [13:26, 4.61s/it]
176it [13:30, 4.61s/it]
177it [13:35, 4.61s/it]
178it [13:39, 4.61s/it]
179it [13:44, 4.60s/it]
180it [13:48, 4.60s/it]
181it [13:52, 4.60s/it]
182it [13:57, 4.60s/it]
183it [14:01, 4.60s/it]
184it [14:06, 4.60s/it]
185it [14:10, 4.60s/it]
186it [14:14, 4.60s/it]
187it [14:19, 4.59s/it]
188it [14:23, 4.59s/it]
189it [14:27, 4.59s/it]
190it [14:32, 4.59s/it]
191it [14:36, 4.59s/it]
192it [14:41, 4.59s/it]
193it [14:45, 4.59s/it]
194it [14:49, 4.59s/it]
195it [14:54, 4.59s/it]
196it [14:58, 4.58s/it]
197it [15:03, 4.58s/it]
198it [15:07, 4.58s/it]
199it [15:11, 4.58s/it]
200it [15:16, 4.58s/it]
201it [15:20, 4.58s/it]
202it [15:25, 4.58s/it]
203it [15:29, 4.58s/it]
204it [15:33, 4.58s/it]
205it [15:38, 4.58s/it]
206it [15:42, 4.57s/it]
207it [15:46, 4.57s/it]
208it [15:51, 4.57s/it]
209it [15:55, 4.57s/it]
210it [15:59, 4.57s/it]
211it [16:04, 4.57s/it]
212it [16:08, 4.57s/it]
213it [16:12, 4.57s/it]
214it [16:17, 4.57s/it]
215it [16:21, 4.57s/it]
216it [16:26, 4.57s/it]
217it [16:30, 4.56s/it]
218it [16:34, 4.56s/it]
219it [16:39, 4.56s/it]
220it [16:43, 4.56s/it]
221it [16:47, 4.56s/it]
222it [16:52, 4.56s/it]
223it [16:56, 4.56s/it]
224it [17:01, 4.56s/it]
225it [17:05, 4.56s/it]
226it [17:09, 4.56s/it]
227it [17:14, 4.56s/it]
228it [17:18, 4.55s/it]
229it [17:22, 4.55s/it]
230it [17:27, 4.55s/it]
231it [17:31, 4.55s/it]
232it [17:36, 4.55s/it]
233it [17:40, 4.55s/it]
234it [17:45, 4.55s/it]
235it [17:49, 4.55s/it]
236it [17:54, 4.55s/it]
237it [17:58, 4.55s/it]
238it [18:03, 4.55s/it]
239it [18:07, 4.55s/it]
240it [18:12, 4.55s/it]
241it [18:16, 4.55s/it]
242it [18:21, 4.55s/it]
243it [18:26, 4.55s/it]
244it [18:31, 4.55s/it]
---------------------------------------------------------------------------
KeyboardInterrupt Traceback (most recent call last)
<ipython-input-58-06557cff080a> in <module>()
17 optimizer.zero_grad()
18 input_, target = Variable(data_[:-1, :]), Variable(data_[1:, :])
---> 19 output, _ = model(input_)
20 loss = criterion(output, target.view(-1))
21 loss.backward()
C:\ProgramData\Anaconda3\lib\site-packages\torch\nn\modules\module.py in __call__(self, *input, **kwargs)
475 result = self._slow_forward(*input, **kwargs)
476 else:
--> 477 result = self.forward(*input, **kwargs)
478 for hook in self._forward_hooks.values():
479 hook_result = hook(self, input, result)
<ipython-input-54-feb8f022b63b> in forward(self, input, hidden)
54 embeds = self.embeddings(input)
55 # output size: (seq_len,batch_size,hidden_dim)
---> 56 output, hidden = self.lstm(embeds, (h_0, c_0))
57
58 # size: (seq_len*batch_size,vocab_size)
C:\ProgramData\Anaconda3\lib\site-packages\torch\nn\modules\module.py in __call__(self, *input, **kwargs)
475 result = self._slow_forward(*input, **kwargs)
476 else:
--> 477 result = self.forward(*input, **kwargs)
478 for hook in self._forward_hooks.values():
479 hook_result = hook(self, input, result)
C:\ProgramData\Anaconda3\lib\site-packages\torch\nn\modules\rnn.py in forward(self, input, hx)
190 flat_weight=flat_weight
191 )
--> 192 output, hidden = func(input, self.all_weights, hx, batch_sizes)
193 if is_packed:
194 output = PackedSequence(output, batch_sizes)
C:\ProgramData\Anaconda3\lib\site-packages\torch\nn\_functions\rnn.py in forward(input, *fargs, **fkwargs)
322 func = decorator(func)
323
--> 324 return func(input, *fargs, **fkwargs)
325
326 return forward
C:\ProgramData\Anaconda3\lib\site-packages\torch\nn\_functions\rnn.py in forward(input, weight, hidden, batch_sizes)
242 input = input.transpose(0, 1)
243
--> 244 nexth, output = func(input, hidden, weight, batch_sizes)
245
246 if batch_first and not variable_length:
C:\ProgramData\Anaconda3\lib\site-packages\torch\nn\_functions\rnn.py in forward(input, hidden, weight, batch_sizes)
85 l = i * num_directions + j
86
---> 87 hy, output = inner(input, hidden[l], weight[l], batch_sizes)
88 next_hidden.append(hy)
89 all_output.append(output)
C:\ProgramData\Anaconda3\lib\site-packages\torch\nn\_functions\rnn.py in forward(input, hidden, weight, batch_sizes)
114 steps = range(input.size(0) - 1, -1, -1) if reverse else range(input.size(0))
115 for i in steps:
--> 116 hidden = inner(input[i], hidden, *weight)
117 # hack to handle LSTM
118 output.append(hidden[0] if isinstance(hidden, tuple) else hidden)
C:\ProgramData\Anaconda3\lib\site-packages\torch\nn\_functions\rnn.py in LSTMCell(input, hidden, w_ih, w_hh, b_ih, b_hh)
32
33 hx, cx = hidden
---> 34 gates = F.linear(input, w_ih, b_ih) + F.linear(hx, w_hh, b_hh)
35
36 ingate, forgetgate, cellgate, outgate = gates.chunk(4, 1)
C:\ProgramData\Anaconda3\lib\site-packages\torch\nn\functional.py in linear(input, weight, bias)
1022 if input.dim() == 2 and bias is not None:
1023 # fused op is marginally faster
-> 1024 return torch.addmm(bias, input, weight.t())
1025
1026 output = input.matmul(weight.t())
KeyboardInterrupt: